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1

Chapter 1

Introduction

The Schrödinger-Newton equation, first proposed by Diosi [1] in 1984, is a single

particle Schrödinger equation that can be interpreted as describing a self-gravitating

particle. A number of studies of the time-independent equation have been carried

out, both numerical [2, 3], and analytical [4]. A fair amount is known about its

asymptotic behavior and the lowest eigenfunctions and eigenvalues. However, since

the equation is nonlinear, new solutions cannot be obtained by superposition, and its

time evolution remains largely unknown.

In this thesis, I report my investigation and numerical solutions of the time depen-

dent Schrödinger-Newton equation, and in doing so, propose a matter-wave diffraction

experiment which can be performed to test the validity of the semiclassical theory of

gravity.

There are essentially two main avenues of research that lead to the Schrödinger-
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Newton equation:

1. one of many attempts to develop a quantum theory of gravity.

2. one of many attempts at obviating the need for a wave packet reduction postu-

late in quantum mechanics.

These two paths to the equation are unrelated, and the fact that they lead to the

same equation is somewhat of an accident. As a background for the reader, I will

discuss each one briefly.

1.1 The Problem of Quantizing Gravity

Despite the fact that some of the most capable minds physics has to offer have

been working on the problem of quantizing gravity, we are not much closer to a so-

lution than when the programme first started, back around 1935. In light of the

difficulty of quantizing general relativity, it is prudent to ask whether the problem

can be avoided altogether. As a theory of the geometry of spacetime, general rel-

ativity is conceptually quite different from other field theories. For example, while

quantum field theories generally live in a fixed background (like the Minkowski space-

time), general relativity is a theory of the dynamics of the background. Whereas we

think quantum gravity would necessarily require commutation relations on the metric

tensor, causality becomes poorly defined once we abandon the notion of a classical

metric. In view of these difficulties, one might be tempted to say that perhaps gravity
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is inherently classical, and should not be quantized at all. Yet this can not be the

whole story. Spacetime is directly coupled to matter sources via the Einstein field

equations themselves, but quantum mechanics applies to these very sources. Perhaps

the correct approach is not to quantize gravity, but to keep it classical and couple it

to quantized matter sources.

The simplest model of classical general relativity coupled to quantum matter,

“semiclassical gravity”, was proposed in the early 1960’s by Møller [5] and Rosenfeld

[6]. In this theory, the Einstein field equations become:

Gµν =
8πG

c4
〈ψ|Tµν |ψ〉 (1.1)

where the operator-valued stress-energy tensor of matter is replaced by an expectation

value. As a Hartree-like approximation to quantized gravity, such a system certainly

makes sense. But as Kibble and Randjbar-Daemi noted [7], viewed as a fundamental

theory, such a model leads to significant nonlinearities in quantum mechanics: the

Schrödinger equation for the wave function |ψ〉 depends on the spacetime metric gµν ,

which in turn depends on |ψ〉.

Although Møller [5] and Rosenfeld [6] first proposed the semiclassical programme

as a method of coupling gravity to quantum fields in a rather vague fashion, there is a

formal basis for eq. (1.1). The linear Schrödinger equation can, of course, be derived

from an action principle. The normalization constraint can be built into the action

via a Lagrange multiplier:

Sq[ψ, λ] =

∫

dt
{

Im 〈ψ̇(t)|ψ(t)〉 − E(ψ(t)) + λ(t) [〈ψ(t)|ψ(t)〉 − 1]
}
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where E = 〈ψ(t)|Ĥ|ψ(t)〉 is the energy expectation. Variation of the parameter

yields the equation of constraint on normalization:

δSq

δλ
= 〈ψ(t)|ψ(t)〉 − 1 = 0

and variation of the wavefunction gives the Schrödinger equation in the form of:

δSq

δψ
= i |ψ̇(t) 〉 − Ĥ |ψ(t) 〉 + λ(t) |ψ(t) 〉 = 0

The fact that λ itself is indeterminate is related to the invariance of Sq under choice

of phase. The vacuum Einstein field equations are also derivable from an action

principle with an action of:

Sg[g] =
c4

16πG

∫

d4x
√
−g R

The simplest possible way to combine quantum mechanics and general relativity is

to combine their two actions:

Sqg[ψ, λ, g] = Sq[ψ, λ] + Sg[g] (1.2)

The independent variables of the resultant action are the metric, state vector, and

Lagrange multiplier.

Variation of eq. (1.2) with respect to λ and |ψ(t) 〉 gives the constraint and evolu-

tion equations again, but this time with a metric-dependent Hamiltonian. Variation

with respect to gµν yields eq. (1.1). The details are difficult to see, but the interested

reader is referred to Kibble and Randjbar-Daemi [7] or Kibble [8].
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There have been a number of arguments against the semiclassical programme, eq.

(1.1). Some of them, while appearing quite convincing at first blush, are actually not

as compelling as they first seem:

• In 1981, Duff [9] showed that any theory containing both classical and quantum

fields has the unfortunate property that classically equivalent theories which

are related only by transformation of variables lead to inequivalent semiclas-

sical theories. However, as Kibble points out [8], semiclassical gravity picks

out gravity as a distinguished field, so it may not be unreasonable to forbid

transformations of the metric based on other fields.

• Gisin [10] showed, under broad circumstances, that the addition of determin-

istic non-linearities into Schrödinger’s equation leads to causality violations.

He showed that a spatially separated entangled quantum system, like an EPR

pair, evolving under such an equation can be used to send superluminal mes-

sages. Measurements on one half of the system can be immediately detected by

measurements on the other half of the system. This type of superluminal com-

munication has been dubbed by Polchinski [11] as an ‘EPR phone’. However,

a number of people including Czachor [12–14], Goldin [15], Jordan [16], and

Polchinski [11] have shown that there are several loopholes in Gisin’s proof. In

particular, they showed that even though a propagator may be nonlinear and

nonlocal, to observers, spatially separated entangled systems appear to evolve

independently from each other. There are no observable superluminal signals,



6

and therefore, no definitive refutation of eq. (1.1) based on these grounds.

However, other arguments against semiclassical gravity seem to be more serious:

• The Bianchi identity,

Gµν
;ν ≡ 0

implies that the Einstein tensor is conserved at all times. However, if we de-

compose the state vector as a sum of amplitudes in the Heisenberg picture,

|ψ 〉 =
∑

i

ci(x
α) ψi

we see that the left hand side of eq. (1.1) is not conserved during wavefunction

collapse, whereas the right hand side is:

8πG

c4
〈ψ|T µν |ψ〉 ;ν =

8πG

c4

∑

i,j

(c∗i cj);ν 〈ψi|T µν |ψj〉 6= 0 ≡ Gµν
;ν

This indicates that if we were to accept eq. (1.1) as a correct theory that de-

scribes the interface between quantum mechanics and general relativity, we

must either give up the standard Copenhagen interpretation or the notion of

wavefunction collapse [17].

• If a classical gravitational field can interact with a quantum particle in the man-

ner of eq. (1.1), it is possible to scatter gravitational waves off quantum particles.

If this scattering event induces wave packet reduction, Eppley and Hannah show

[18] that we must either give up the Heisenberg uncertainty relations or conser-

vation of momentum. They go on to show that if the gravitational wave does
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not induce wave packet reduction, then we can only save the uncertainty prin-

ciple if we accept superluminal signalling. This objection has a long history;

Bohr and Rosenfeld [19] showed back in 1933 that any theory containing both

classical and quantized fields will necessarily violate certain basic properties of

any quantum theory, like an uncertainty principle.

• The previous two arguments against eq. (1.1) involved thinking about conse-

quences of wave packet reduction in such a theory. But this is nothing new; the

‘R-process’ has always been a source of consternation, but as Kibble points out

[8] it is even more troubling in a non-linear theory which does not obey the su-

perposition principle, like semiclassical gravity. We can try to sidestep the issue

of wave packet reduction by appealing to Everett’s ‘many worlds’ interpretation

of quantum mechanics, where there exists a universal wavefunction which never

collapses. Unfortunately, this does not help matters much. Lab experiments

performed by Page and Geilker [17] have shown that eq. (1.1) is inconsistent

with nature if we adopt the many-worlds interpretation of quantum mechanics.

While these objections to semiclassical gravity are fairly serious, none of them

is decisive. A key question is whether the quantum nonlinearities in semiclassical

gravity are significant. There are three possible answers to this question:

1. The effect is unobservably small.

2. The effect is in obvious conflict with experiment.
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3. Gravitational interactions cause wave function collapse, in which case we might

want to modify quantum mechanics, not general relativity, as a first step in

unification of the two theories.

The last possibility (to make sense) would require that gravitational wave function

collapse be a fast process for macroscopic objects but a cosmologically slow process for

atomic particles, thus obviating the need for a postulate of wave function reduction.

While perhaps unlikely, this mechanism would provide an implementation of Penrose’s

proposal [20] that gravitational effects are responsible for wave function collapse in

quantum theory. Colloquially, this would allow atoms to remain quantum mechanical

and cats to remain classical.

As previously mentioned, there are two different but related areas of research

that motivate the Schrödinger-Newton equation. The first approach was just dis-

cussed: combination of quantum mechanics and general relativity. Penrose’s proposal

of gravitational wavefunction collapse provides the segue into the second approach:

the problem of the measurement process.

1.2 The Problem of the Measurement Process

Penrose [21] (as perhaps every other quotable physicist who ever lived) wrote, a bit

dramatically, that quantum mechanics has two bodies of fact in its favor. First, it has

a remarkable success with experiment. It agrees with the most delicate and intricate

experiments humanity has ever performed. Second, it is a theory of astonishing and
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profound mathematical beauty. However, quantum mechanics also has one thing

against it: it makes absolutely no sense.

Penrose was mainly talking about the axiom of wavefunction collapse. Penrose’s

problem with wave packet reduction and John S. Bell’s search for the “interface of

the quantum and classical worlds”, both boil down to one thing: the problem of the

measurement process. The central problem seems to be that, as it stands, there is no

way to formulate quantum mechanics without making reference to “measurements”.

Yet, as Clifton and Monton smartly comment in [22], surely the word “measurement”

is too ambiguous of a concept to be taken as a primitive of a fundamental physical

theory.

Popular literature focuses on the non-deterministic nature of quantum mechanics,

and Einstein’s quip about God and dice is often quoted. However, most of the time,

quantum mechanics is a deterministic and unitary theory with no dice or probability

at all in the sense that given an initial condition, |ψ(0) 〉, the axioms of quantum

mechanics tell us precisely how to perform a time evolution, Û(t) |ψ(0) 〉 = |ψ(t) 〉, in

a completely deterministic and unitary manner. Penrose dubs this the U process.

The conceptual problems begin at the measurement process, which cannot be de-

scribed as a unitary evolution of the wavefunction, so an ad hoc axiom is added to the

postulates of quantum mechanics known as reduction of the wave packet. A “mea-

surement” involves the collapse of a wavefunction into an eigenstate of the operator

being measured. Penrose dubs this the R process.
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Many papers and books have been devoted to the R process, but to summarize

briefly some of the more serious objections to it:

1. It is clearly not relativistically invariant.

2. It paints a strange picture of a system evolving in one of two very incompatible

ways: the continuous U process or the discontinuous R process.

3. What should we make of superposed states that blink out of existence?

4. The axioms make no mention about precisely what triggers R or any details

about the process. Pragmatically, it makes no difference, as long as the event

happens by the time the measurement is made. But we certainly should, if

possible, want to understand something as fundamental as the measurement

process.

5. The application of quantum mechanics to the macroscopic world leads to patently

paradoxical situations, often involving cats and friends of Wigner.

Most people would be glad if the whole notion of wave packet reduction went

away, and there is a cottage industry of physicists who try to do away with it.
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1.2.1 Quantum Mechanical Spontaneous Localizations and

Collapse Dynamics

One class of attempts to explain why quantum superpositions of a macroscopic

object are not observed is collectively known as “collapse models” (originally referred

to as Quantum Mechanics with Spontaneous Localizations, or QMSL). QMSL’s main

concern is with “the most embarrassing kind of superposition”: a superposition of

states describing a single particle, separated by a large region of space. Most explicit

and viable collapse models are variations of an early QMSL model, named “GRW

Theory” after its principle investigators, Ghirardi, Rimini and Weber. [23, 24]

Consider the state vector of N distinguishable particles in the coordinate repre-

sentation, ψ(~q1, . . . , ~qN ). A localization (known as a “hit”) on the i’th particle is

defined to mean that ψ is spontaneously multiplied by the thin Gaussian function:

G(~qi, ~x) = C e−|~qi−~x|2/2d2

where d is a fundamental constant of the theory and represents the localization ac-

curacy. The (not yet normalized) wavefunction becomes:

Ψi(~q1, . . . , ~qN ;~x) = C ψ(~q1, . . . , ~qN) e−|~qi−~x|2/2d2

The localization suppresses single-particle superpositions in which the particle exists

at physical locations separated by a distance of at least d. As an example, suppose a

single particle wavefunction has a bi-modal distribution (“like an Asian camel”) with

peaks located near x = a and x = b. A hit occuring within within a distance of d of
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x = a will result in a wavefunction where most of the probability density is clustered

around point a (the Gaussian is very small at point b, so after the localization the

wavefunction will be negligible there). On the other hand, if the localization occurs

at a point far away from a or b, the resulting wavefunction will be nearly unchanged

after normalization.

A localization occurs at a randomly distributed time according to a Poisson dis-

tribution with frequency f , which is another fundamental constant of the theory. The

location of a hit is determined by the probability density |ψi|2, so localizations tend to

occur wherever the particle is most likely to be found. Thus, if a particle is described

by states which are nearly zero everywhere except for two spatially different locations,

spontaneous localizations have a tendency to suppress the states which are large at

either one location or the other. The net result is that the particle’s wavefunction

clusters around a single position.

When the fundamental constants are given by f = 10−16 s−1 and d = 10−5 m−1,

it is found that microscopic systems undergo localization, on average, every hundred

million years while macroscopic system undergo localization every 10−7s. While this

seems very good, there are misgivings with the whole notion of collapse dynamics:

1. We now have yet two more fundamental constants of nature. Physicists are

trying to reduce the number of fundamental constants, not increase them.

2. Until recently, attempts at a relativistic generalization of collapse models have

met with failure due to untractable divergences. In 2004, Tumulka reports [25]
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a covariant formulation of GRW theory, however, this theory is non-local and

violates Bell’s inequality.

3. Collapse models, at their heart, are phenomenological attempts at solving what

really should be a foundations issue. [26] They may or may not solve the

measurement problem without hidden variables, so they certainly can not be

any worse than standard quantum mechanics, however, they make no attempt

to explain the rationale behind why the hits occur in the first place.

4. GRW doesn’t quite do away with wavepacket reduction. Ideally, G would be

a Dirac delta function, and the localization would put the particle in an eigen-

state of position. This would do away with the need for wavepacket reduction.

However, this also means a spontaneous infinite uncertainty in momentum.

Therefore, G cannot be a delta function and wavepacket reduction must still be

present in QMSL theory.

5. As Shimony [27] points out, QMSL is tailored for the measurement of a par-

ticular object variable, however, this injects a certain anthropocentric element

into what should be a fundamental and universal theory.

6. Lewis points out [28] that QMSL requires relaxation of the notion that mutually

exclusive events be represented by mutually orthogonal vectors, which requires

that we abandon the enumeration principle1 for macroscopic objects. Ghirardi

1If marble 1 is in the box, and if marble 2 is in the box . . . and if marble N is in the box, then
all N marbles are in the box. More generally, if statement A1 is true, and A2 is true, · · · , and AN

is true, then all N statements together are true.
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and Bassi respond [29] that Lewis’s argument fails, in practice, because the

wavefunction he uses to exhibit the violation cannot persist for more than ‘a

split second’. Clifton and Monton argue [22] that Lewis’s attack on QMSL is

valid, but the enumeration principle cannot empirically fail. Ghirardi and Bassi

respond [29] that the analyses of Lewis and Clifton and Monton are flawed

because they do not take into account the correct interpretation of a QMSL

type theory.

7. It’s possible for a localization to occur where the particle’s wavefunction density

is initially small. In this situation, a particle’s wavefunction can spontaneously

localize very far from the bulk of the probability density. This is called the “tail

problem”, and was first stated by Shimony [27] as:

[We should] not tolerate “tails” [in a wavefunction] which are so broad
that [the] different parts can be discriminated by the senses, even if
very low probability amplitude is assigned to the tail.

Proponents of QMSL say that the low probability of tails forming makes QMSL,

for all practical purposes, “good enough”. Still, much energy has gone into re-

solving the tail problem [30]. Ghirardi writes [26] that the tail problem will only

be decisively resolved by modifying the standard probabilistic interpretation of

quantum mechanics. Clearly, “the jury is still out” on this issue.
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1.2.2 Relative States and Many-Worlds Interpretation

Another class of attempts at solving the measurement problem was born out of

the doctoral thesis of Hugh Everett, published in 1956. Everett proposed the relative

states interpretation of quantum mechanics, which simply dropped the wavepacket

reduction postulate from standard quantum mechanics altogether and took the result-

ing theory to be universally correct. To Everett, the measurement problem amounted

to the fact that the observer is distinct from what is being measured in standard quan-

tum theory.

Suppose an apparatus is used to measure Lz for a spin-1/2 particle which is in a

superposition of states. The initial state of the observer-particle system is:

|0 〉obs

(

α | ↑ 〉 + β | ↓ 〉
)

Standard quantum theory says that once the apparatus makes a measurement, one

of the particle states collapses, and the resulting system is in one of two states:

|0 〉obs | ↑ 〉 with probability |α|2 or |0 〉obs | ↓ 〉 with probability |β|2. However, in

the relative state formulation, there is only one possible state for the system after

measurement, the entangled state:

α |0 〉obs | ↑ 〉 + β |0 〉obs | ↓ 〉 (1.3)

At the end of the measurement, the apparatus can only be specified as an entangled

state relative to the state of the particle. Everett does not explain how an observer

gets a determinate measurement from a state described by eq. (1.3), and it is not
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at all clear why such a state would reproduce the predictions of standard quantum

theory.

However, there have been serious attempts to recover Born probabilities from

the relative states type theories. After all, these theories are attractive in that other

than dropping the wave packet reduction postulate, they propose very little change to

standard quantum mechanics. For example, Deutsch [31] published a proof that Born-

compatible probabilities arise naturally from the non-probabilistic axioms of quantum

mechanics along with the non-probabilistic axioms of classical decision theory. In

his paper, he envisions a decision maker faced with decisions about the outcome of

quantum measurements which have not been made yet. Deutsch shows that a rational

decision maker makes decisions as if the probabilistic axiom of quantum mechanics is

true. In other words, the probabilistic aspect of quantum mechanics is implied by the

non-probabilistic axioms. To Deutsch, a rational decision maker is one which abides

by the reduced rules of decision theory.2

Deutsch’s proof has been criticized [32] for containing crucial hidden assumptions

which make the argument substansively less convincing (and in fact the authors pro-

vide an alternative derivation of quantum probability). For further references on

obtaining standard Born probabilities from relative state type theories (either explic-

itly or implicitly) see [31] as well as [33] which also contains references to papers which

are critical of many such attempts.

2To avoid circular reasoning, Deutsch uses a reduced version of decision theory in which anything
that directly or indirectly refers to probability is deleted from the theory.
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Everett’s theory cannot be considered to be a serious solution to the measurement

problem, but it left the opportunity open for many people to interpret his work,

and provided a springboard for other theories like many-worlds, many-minds, many-

histories, relative-facts, and the Bare theory. The host of no-collapse interpretations

which came from Everett’s work has a long list of adherents, including Hawking,

Feynman, DeWitt, Wheeler, Gell-Mann, and Weinberg.

Many-Worlds Interpretation

The most popular no-collapse theory is the many-worlds interpretation, pioneered

by DeWitt in 1971, although there are many variants of MWI itself. DeWitt3 postu-

lates that in an appropriate basis there exists a world, which is regarded as a distinct

macrostate, for each term in a state like eq. (1.3):

|Ψuniverse 〉 =
∑

i

ai |φworld i 〉 (1.4)

Each distinct world contains a reality in which the corresponding determinant mea-

surement is made. Thus, for state 1.3, there are two distinct worlds; one in which the

observer measures |0 〉obs | ↑ 〉 and another one which measures |0 〉obs | ↓ 〉.

The universe is represented by both a state vector and the set of all dynamical

variables. As the dynamical variables evolve in time, the state vector decomposes

into orthogonal vectors. Each vector represents a world which receives an Everett

term, and that is the world in which the corresponding measurement is made.

3DeWitt’s variant of MWI is now sometimes called the “many-splitting” interpretation.
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Thus, the worlds, which are non-interacting, are considered to be orthogonal parts

of a universal wavefunction. This universal wavefunction never collapses, but evolves

under the deterministic and unitary U process. It is not regarded as the quantum

‘state’ of the universe, but rather, as the universe itself.

There are two consequences to this. First, since superpositions of states no longer

collapse to a single state, the R process is not needed to explain why a particu-

lar eigenvalue was obtained. Second, the observer no longer plays a special role in

measurement since we no longer need to worry about what causes R to begin with.

The many-worlds interpretation addresses many of the objections to collapse dy-

namics theories. In particular, it:

1. Needs no new fundamental constants.

2. Trivially extends to relativistic theories.

3. As opposed to collapse dynamics, it explains, not just models, what happens

during the measurement process.

While the many-worlds interpretation contains all the laws of quantum mechan-

ics, modulo wave packet reduction during a quantum measurement, there are still

objections to it:

1. Postulating the existence of so many worlds seems to be a violation of Ockham’s

Razor. One would think that we would need only our world to explain our

laboratory observations.
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2. Quantum mechanics allows us to compose a universal wavefunction in terms

of any basis we choose but many-worlds interpretation theories seem to pick

out the preferred basis of world branches, eq. (1.4). However, a lot of work

has gone into solving this apparent inconsistency. One avenue of attempts has

been to show that the preferred “Everett basis” for the universal wavefunction

is environmentally selected through interactions with the environment, or, de-

coherence. See [33] for an overview and further references on attempts to solve

the preferred basis problem of the many-worlds interpretation.

3. There have been numerous proposals for testing the validity of MWI over stan-

dard quantum mechanics, On a pragmatic level, we have no idea how to ex-

perimentally distinguish a many-worlds interpretation theory from a collapse

theory. The most obvious test would be to look for interference effects between

worlds containing different macroscopic states.

4. Many-worlds interpretation theories still do not explain the apparent localiza-

tion of macroscopic objects.

1.2.3 The Role of Gravity in Wave Packet Reduction

Another avenue of approach to solving the measurement problem is to postulate

that gravity plays a role in wave packet reduction, which has been investigated by

Penrose [20, 21], Diosi [1], Károlyházy [34], and a great many others. The motivation

often comes from one aspect of the measurement problem: uncertainty in a position
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of a macroscopic object’s center of mass.

From Newtonian mechanics, a free macroscopic object’s center of mass is either

stationary or moves uniformly on a straight line. Furthermore, its center of mass

always seems to have a well defined position. On the other hand, free particles evolving

under Schrödinger’s equation are described by wave packets. The free Schrödinger

equation is essentially a diffusion equation, and like most diffusion equation solutions,

quantum wave packets are never stationary: they spread with time. This spreading

leads to increasingly larger uncertainties in the position of the center of mass. That

is the paradox of applying quantum mechanics to macroscopic objects.

Considering its remarkable success in the laboratory, it has been asked if there

is anything that could be done about this paradox without appreciably changing

quantum mechanics. Conceptually, if we were to form a deep and narrow potential

for macroscopic objects, their wavefunction would be more or less stationary, with

a well defined center of mass. Likewise, for a shallow potential well, the quantum

mechanics for microscopic objects would remain essentially unchanged.

Since we want this behavior to occur in absence of external forces, this idea of

deep and shallow potential wells must be due to a property of the object itself.

Large objects must inherently produce deep wells, and small objects must inherently

produce shallow wells. The size of the well is tied to the gravitational mass of the

object, so gravitational potential energy is a natural agent for the process. Such a

hypothesis is certainly logical: if true, it would explain why quantum theory has been

successful when applied to atoms but nonsensical when applied to baseballs.
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There are many starting points one could take in applying gravity’s role in quan-

tum mechanics. One such starting point would the semiclassical theory of Møller and

Rosenfeld:

Gµν =
8πG

c4
〈ψ|Tµν |ψ〉 (1.1)

In the next section, eq. (1.1) will be the starting point in the derivation of the

Schrödinger-Newton equation.

1.3 The Schrödinger-Newton Equation

Whether semiclassical gravity is used to bridge quantum mechanics and general

relativity or to explain why macroscopic objects do not appear as superpositions, the

full system eq. (1.1) is too complicated to tackle directly. However, much can be

learned by looking at the linearized weak-field limit of semiclassical gravity. Simpli-

fication of eq. (1.1) proceeds in the standard way with the following assumptions:

1. For weak gravitational fields, we write down a metric for a nearly flat manifold,

gµν = ηµν + hµν

where the hµν << 1 are small perturbations.

2. The source of the weak gravitational field is mostly due to mass density, not

stress energy:

|T ij|
T 00

=
|T ij|
ρ

≪ 1
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3. Stress energy sources move with v ≪ c; time derivatives can be dropped.

With these assumptions, eq. (1.1) becomes a linearized theory, the details of which

can be found in any text on General Relativity.4 The result is the familiar Poisson

equation:

∇2φ(~x, t) = 4πG 〈ψ|m|ψ〉 = 4πGm|ψ(~x, t)|2

With the equally familiar solution:

φ(~x, t) = −Gm
∫ |ψ(~x ′, t)|2

|~x− ~x ′| d3x′ (1.5)

The multi-particle Schrödinger equation for N interacting masses is given by:

−
N
∑

i=1

h̄2

2mi
∇2

iψ(~x, t)+
N
∑

i,j=0

Vij(|~xi−~xj |)ψ(~x, t)+
N
∑

i=1

mi φ(~xi, t)ψ(~x, t) = ih̄
∂ψ

∂t
(1.6)

where Vij denotes the interaction potential energy between masses i and j, and φi

gives the potential of mass i, which was obtained via linearizing the semiclassical

gravity equation. For this research, the simplest possible system was investigated;

the time evolution of a single particle of mass m:

− h̄2

2m
∇2ψ(~x, t) −mφ(~x, t)ψ(~x, t) = ih̄

∂ψ

∂t

Using the gravitational potential from eq. (1.5), this equation becomes the Schrödinger-

Newton equation:

− h̄2

2m
∇2ψ(~x, t) −Gm2

∫ |ψ(~x ′, t)|2
|~x − ~x ′| d3x′ ψ(~x, t) = ih̄

∂ψ

∂t
(1.7)

4For example, [35], section 17.4
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A few words should be said about this equation. It is a non-linear single-particle

Schrödinger equation, often called the Schrödinger-Newton equation, and describes

the evolution of a non-local and self-interacting particle of mass m. The particle

itself can be visualized as being “smeared”, superposed over a probability density,

ρ(~x, t) = m|ψ(~x, t)|2. Although the idea is unorthodox, it certainly makes sense; the

mass is distributed in space according to a weighted average of where the particle is

most likely to be found.

As a final note, the time-independent Schrödinger-Newton equation has very in-

teresting similarities to the Hartree equation5 of electronic structure theory. A large

amount of effort has gone into studying the Hartree equation, and the machinery

used to solve it (stochastic methods, Green’s functions, Monte Carlo, etc.) may be

relevant to future study of the many-body Schrödinger-Newton equation, which is a

logical avenue for future research.

1.4 Analytic Properties

Before describing the numerical work, we first consider a few analytic properties

of the Schrödinger-Newton equation.

The Schrödinger-Newton equation modifies the quantum evolution by postulating

that particle wavefunctions couple to gravitational potential, which is a reasonable

thing to expect. This coupling leads to a non-linear Schrödinger equation, but these

5The Hartree equation approximates a many-body Schrödinger equation with a single particle
equation in which the single particle sees the average potential of all the other particles.
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non-linearities do not disturb the interpretation of |ψ(~x, t)|2 as a probability density.

For instance, an ordinary probability current can be written down:

∂|ψ|2
∂t

= ∇ ·
[

ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗)

]

And preservation of normalization is built directly into the semiclassical action, eq.

(1.2):

d

dt

∫

|ψ(~x, t)|2 d3x = 0

As a consequence, the expectation of the momentum operator is conserved:

d

dt
〈ψ|p̂|ψ〉 =

d

dt

∫

ψ∗(~x, t) (−ih̄∇)ψ(~x, t) d3x = 0

as is the expectation of the energy operator:

d

dt
〈ψ|Ê|ψ〉 =

d

dt

∫

ψ∗(~x, t)

(

− h̄2

2m
∇2 −Gm2

∫ |ψ(~x, t)|2
|~x − ~x ′| d

3x

)

ψ(~x, t) d3x = 0

Next consider the effect of rescaling coordinates. As discussed in Appendix A, the

Schrödinger-Newton equation is invariant under the transformation:

m→ µm, ~x → µ−3~x, t→ µ−5t, ψ → µ9/2ψ (1.8)

where µ is an arbitrary constant. In particular, consider an initial Gaussian wave

function

ψ(r, 0) =
(α

π

)3/4

e−αr2/2 (1.9)

of width α−1/2. One might expect a two-parameter family of solutions, determined

by α and m. However, the scaling eq. (1.8) implies that if ψ(α,m; ~x, t) is a solution,
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so is:

µ9/2 ψ(µ6α, µ; µ−3~x, µ−5t)

Thus it is sufficient to consider a one-parameter family of solutions. We can choose

our parameter as follows. Up to factors of order one, the initial gravitational energy

of a Gaussian wave packet eq. (1.9) is

V̄ = Gm2α1/2

while the initial kinetic energy is

Ē =
h̄2α

m
(1.10)

The ratio V̄ /Ē is independent of the scaling parameter µ. Suppose, for instance, that

wave functions really do “collapse” for certain ranges of parameters. Let Tcoll be the

characteristic collapse time. If we choose an arbitrary fixed reference mass m0 and

define the arbitrary scale factor µ such that m0 = µm, then it follows from eq. (1.8)

that

Tcoll(m, V̄ /Ē) =

(

m

m0

)5

Tcoll(m0, V̄ /Ē) (1.11)

and hence that (m0/m)5 Tcoll(m, V̄ /Ē) depends only on the single “collapse” param-

eter V̄ /Ē.

1.4.1 Strength of Self-Interaction

A different type of intuition needs to be used when dealing with non-linear equa-

tions such as eq. (1.7). For instance, increasing the mass of any standard linear



26

Schrödinger equation changes the time scale, not the physics, of the problem. The

non-linearities here mean that changing the mass can have a profound effect on the

nature of the equation’s solutions. In other words, small changes in parameter do not

necessarily lead to small changes in the solution.

Scaling eq. (1.7) into dimensionless quantities can be used to gain insight into

the possible domains where the non-linearities become important. Consider eq. (1.7)

with a spherically symmetric initial condition so that all angular derivatives vanish

and the wavefunction is a function of r alone. The wavefunction can be written as a

sum of Fourier components:

ψ =

∫ ∞

0

A(k, t) j0(kr) dk

where j0(kr) is a spherical Bessel function of order zero. The potential can be ex-

panded using the standard expansion6 for 1/R:

∫ |ψ(~r ′, t)|2|
|~r−~r ′| d3r′ =

∫

|ψ(~r ′, t)|2
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

4π

2ℓ+ 1

rℓ
<

rℓ+1
>

Y m
ℓ (θ, φ) Y m∗

ℓ (θ′, φ′) d3r′

where r> = max(r, r′) and r< = min(r, r′). Using the orthogonality of spherical

Bessel functions and spherical harmonics, and the following scalings:

r =
Gm

c2
ρ k =

c2

Gm
α t =

2G2m3

h̄c4
τ A(k, t) =

√

c2

Gm
a(α, τ)

6See [36], eq. (3.70), pg. 102.
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we arrive7 at the following dimensionless version of eq. (1.7):

(

i
∂

∂τ
− α′2

)

a(α′, τ) =

− ǫ2α′2

∫

α

a(α, τ)

∫

ρ

j0(αρ)j0(α
′ρ)

∫

α′′

a∗(α′′, τ)

∫

α′′′

a(α′′′, τ)

×
∫

ρ′
j0(α

′′ρ′)j0(α
′′′ρ′)

ρ′2

ρ>

dρ′ dα′′′ dα′′ dρ dα (1.12)

The left side of eq. (1.12) is the scaled free particle Schrödinger equation. The right

hand side represents the gravitational potential. The parameter

ǫ2 =

(

4Gm2

h̄c

)2

is a measure of the potential strength.

For ǫ2 >> 1, the particle is strongly self-interacting, and for ǫ2 << 1 the parti-

cle is very nearly free of gravitational non-linearities. For an electron, ǫ2 ∼ 10−90.

This might be an indication that semiclassical gravity predicts that electrons remain

quantum mechanical entities, free of self-localization. On the other hand, for a .1 kg

baseball, ǫ2 ∼ 1031. This may be an indication that a baseball’s wavefunction quickly

collapses in its own gravitational potential well. Setting ǫ ≡ 1 to see what order of

mass is the “border” between having negligible and non-negligible self-gravitational

effects, it is found that this border mass is about 10−8 kg, which is the Planck mass.

While the fact that the Planck mass should be some kind of border between

quantum mechanical and classical behavior is hardly surprising, it should be noted

7The details of this calculation are longer than anybody, including me, should care to see. But I
will provide them upon request.
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that the width of the particle also plays a role in any possible collapse dynamics.

However, it is not immediately clear how to translate a wavefunction’s “width” (for

example, the parameter α in eq. (1.9)) in terms of a macroscopic property. Should it

be the width of a baseball? The baseball’s Compton’s wavelength? The uncertainty

in the position of the surface electrons that make up the baseball?

1.5 Matter-Wave Experiments

The proposed test of semiclassical gravity depends on results obtained via matter-

wave diffraction or interference, so some time will be spent describing these types of

experiments and their history. The interested reader is urged to read the cited ref-

erences for further information. After discussing matter-wave experiments in general

and their history, I will discuss what appears to be the most popular way to conduct

the experiment: using a Talbot-Lau interferometer.

In 1924, Louis de Broglie predicted that matter exhibits wavelike properties at

a wavelength inversely proportional to the mass’s momentum. de Broglie’s matter-

wave duality hypothesis was experimentally demonstrated by the electron diffraction

experiments of Clinton Davisson and Lester Germer [37] in 1927 and by the neutron

diffraction experiments of Shull and Wollan [38] in 1948.

But de Broglie’s prediction wasn’t just for microscopic masses; the prediction was

for all masses. Despite this, the naked-eye world is unequivocally classical. Clearly,

the boundary between the microscopic and macroscopic worlds occurs somewhere
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within the 31 orders of magnitude between the masses of an electron and a rock. A

natural question to ask is: where is this boundary between the classical and quantum

mechanical worlds?

Since quantum mechanics works exceedingly well for microscopic objects, a prag-

matic approach to finding this boundary is by performing experiments which demon-

strate diffraction or interference of ever increasing masses. In the simplest experiment

of this type, one would direct a beam of masses towards a Young’s two slit barrier

with one slit covered. The resulting image would be, more or less, a dot. To demon-

strate the wavelike property of the mass under investigation, one would simply need

to uncover the other slit to reveal interference.

However, this programme is easier said than done. Such an experiment cannot

be done for a rock or even a virus, for the de Broglie wavelength will be far too

small; interference fringes would be much too close together to be measurable by any

type of technology available in the foreseeable future. Additionally, the slit spacing

appropriate for such small wavelengths would be difficult if not impossible to build.

Lastly, decoherence becomes a serious limitation for such an experiment as the mass

becomes larger. The larger an object is, the more likely its state gets entangled with

the environment, causing a loss of coherence.

Much experimental and theoretical effort by extremely ingenious researchers has

gone into devising experiments that circumvent the problems of decoherence and

detection of waves with such small wavelength. The history of matter-wave experi-

ments is documented [39], but in the 1990’s saw, for the first time, such experiments
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performed on entire atoms and molecules.

• In 1991, Oliver Carnal and Jürgen Mlynek [40] used a Young’s double slit barrier

to demonstrate diffraction of entire Helium atoms.

• In that same year, Pritchard et. al. [41] used a Mach-Zehnder interferometer

to demonstrate interference fringes from Sodium atoms.

• In 1994 Clauser and Li [42] used a similar interferometer, called a Talbot-Lau

interferometer, to demonstrate matter-wave diffraction of Potassium atoms.

• In that same year, Schöllkopf and Toennies [43] demonstrated diffraction of

Helium dimers and diatomic molecules like H2 and D2. Although this exper-

iment didn’t break the mass record, it did demonstrate diffraction for more

complicated structures than previously demonstrated.

• In 1999, Nairz, Arndt, and Zeilinger demonstrated diffraction for the fullerenes

C60 and C70 [39] using a nano-fabricated diffraction grating.

• In 2002, Zeilinger et al. used a Talbot-Lau interferometer to redo the diffraction

experiments of C60 and C70 [44].

• In 2003, Zeilinger et al. used a Talbot-Lau interferometer to demonstrate

the wave properties of fluorofullerene C60F48 and tetraphenylporphyrin (TTP)

C44H30N4. At 1632 amu and 108 covalently bonded atoms, C60F48 is, so far,

the most massive and complicated molecule to exhibit wavelike properties. At

614 amu, tetraphenylporphyrin is not the most massive molecule to display
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wavelike properties, however, it is a “biomolecule” that can be found in biosys-

tems containing, for example, chlorophyll and hemoglobin. Additionally, some

physicists had argued that only highly symmetric or even spherically symmetric

molecules would exhibit interference. TPP, being roughly planar and twice as

broad as C60 proved such claims were wrong.

The future of matter-wave diffraction appears exciting. Researchers agree that

the Talbot-Lau interferometer is extremely well suited for these types of experiments.

There is talk of using this apparatus for matter-wave experiments involving proteins,

live viruses, and nano-crystals. [45, 46] To date, the experiments have shown that

there may be no fixed boundary between the classical and quantum mechanical worlds.

Making the transition between the two different types of behavior may only be a

function of the exchange of path information between the system and its environment.

Arndt and Zeilinger write [45],

Extrapolating our results to bigger masses and higher temperatures, we
believe that neither collisions nor thermal decoherence will be a problem
in these cases. No fundamental limit of quantum interference is yet in
sight. . .

which is good news for this thesis. In chapter 4, I will show that such an experi-

ment can be used to test the semiclassical theory of gravitation.
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1.6 Talbot-Lau Interferometry

There are many excellent references on Talbot-Lau interferometry [44, 46, 47] by

experts in the field, so no attempt will be made to provide an exhaustive treatment of

this device. Instead, a very simplistic overview will be given to acquaint the unfamiliar

reader for the purposes of this dissertation.

When one holds a diffraction grating up to monochromatic light and places a

magnifying glass directly over the grating, a clear and sharp image of the grating can

be seen through the magnifier. If the magnifier is moved away from the grating, the

image of the grating goes out of focus. However, as the distance increases further, it

will be found that the image of the grating will come into sharp focus at some distance

zT , called the Talbot distance. Rayleigh showed that this distance is zT = d2/λ

where d is the grating constant (space between grating slits) and λ is the wavelength

of the light impinging the diffraction grating. This aliased image of the diffraction

grating can be illustrated with a straightforward calculation using the Kirchhoff-

Fresnel theory of light, applied to de Broglie matter-waves.

A Talbot-Lau interferometer consists of a wave source, three diffraction gratings

(named g1, g2, and g3), and a detector, as shown in Figure 1.6.

The overall gist of the interferometer is as follows:

• The wave source produces the type of waves desired, here, de Broglie matter-
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source

g1 g2 g3

detector

Figure 1.1: Talbot-Lau interferometer setup. As particles leave the source

(to the left of g1), they pass through three diffraction gratings, labelled g1,

g2, and g3. The resulting interference is detected by an apparatus situated

to the right of g3.

waves. Unlike many other types of interferometers, the beam from the source

does not need to be precisely collimated: it can contain waves with wave vectors

pointing in different directions. This is an advantage over other types of optical

devices that require spatially coherent waves.

• The beams impinge upon g1. From Huygen’s Principle, each slit in grating g1

acts as point wave source. The purpose of g1 is to prepare the required coherence

for the next grating. In this way, g1 can be considered to be the “source” of the

interferometer.

• Each slit of g1 acts as an independent wave source for g2. By the Talbot-Lau

effect, an image of g2 forms at the Talbot distance.

• To demonstrate interference, g3 (which has the same period as the expected

interference) is placed at the Talbot distance so that the diffraction image of g2
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forms on its surface. g3 can be moved laterally to either block the interference

fringes or allow them to pass through.

• By shifting the lateral position of g3, a detector at the end of the interferometer

should be able to detect an alternating increase and decrease of the number of

transmitted molecules.

• The entire apparatus is placed in an evacuated chamber to limit decoherence

effects.

There are numerous advantages of the Talbot-Lau interferometer over other inter-

ferometers and methods to detect atomic and molecular de Broglie waves which are

discussed in depth in the literature. [42, 44–47] Some of these advantages are given

by:

• The Talbot-Lau interferometer can accept a large solid angle beam from the

wave source. Not only does this mean a relaxed restriction on collimating

apparatus, it also leads to stronger interference signals from a weaker wave

source.

• The de Broglie wavelength is inversely proportional to mass, so as we test

larger masses, the wavelength becomes smaller. It’s an engineering challenge to

manufacture diffraction gratings with a grating constant that can accommodate

these waves. In addition, other issues become important with decreased size,

such as van der Waal attraction between the particle and the grating. However,
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Talbot-Lau interferometers require a grating period that scales as the square

root of the wavelength whereas other optical devices require gratings that scale

linearly with the wavelength. This means diffraction gratings for Talbot-Lau

interferometers are larger.

• Talbot-Lau interferometers rely on near field effects, so are generally small and

rugged compared with far-field interferometers.

In fact, the advantages of near-field interferometry are so compelling, that is has

even been suggested to perform matter-wave experiments with live viruses. [46, 48]
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Chapter 2

Solving the Equation Numerically

This chapter will discuss how the Schrödinger-Newton equation was discretized and

numerically solved, and the complications that arose along the way.

2.1 Statement of the Numerical Problem

The Schrödinger-Newton equation, eq. (1.7), is considered for the case of a self-

gravitating mass m centered at the origin. The initial condition is a Gaussian of

parameter α:

ψ(r, 0) =
(α

π

)3/4

e−αr2/2 (2.1)

Since this equation is rotationally invariant, we expect any solution to retain the

spherical symmetry of the initial condition. Thus, in spherical coordinates, ψ will

depend only on time and the radial coordinate. The angular derivatives in eq. (1.7)
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vanish, and we are left with a 1+1 dimensional integro-partial differential equation:

− h̄2

2m

1

r2

∂

∂r

(

r2∂ψ

∂r

)

− Gm2 ψ(r, t)

∫ |ψ(~r ′, t)|2
|~r −~r ′| d3r′ = ih̄

∂ψ

∂t

and the potential can be simplified (see appendix B for details on simplifying the

potential integral):

− h̄2

2m

1

r2

∂

∂r

(

r2∂ψ

∂r

)

− 4πGm2

(

1

r

∫ r

0

|ψ(~r ′, t)|2 r′2 dr′ +

∫ ∞

r

|ψ(~r ′, t)|2r′ dr′
)

ψ(r, t) = ih̄
∂ψ

∂t
(2.2)

Because the Schrödinger-Newton Hamiltonian is spherically symmetric, it com-

mutes with the Parity operator. Since there is no explicit time dependence, parity

is a constant of the motion. The Gaussian initial condition has even parity, so the

solution must also have even parity:

ψ(~r, t) = ψ(−~r, t)

This, along with continuity of the derivative gives the first boundary condition:

limit
~r→0

dψ

dr
= 0 (2.3)

The second boundary condition is a restatement of the fact that the wavefunction

must be a square integrable function:

limit
~r→∞

ψ(~r, t) = 0 (2.4)

Thus, the statement of the numerical problem is:

Solve eq. (2.2) given the initial condition eq. (2.1) and boundary conditions
eq. (2.3) and eq. (2.4) on the domain r ∈ [0,∞) for some finite time
interval.



38

2.2 Derivatives at the Polar Origin

Although we are dealing with only 1 spatial coordinate, the “sphericalness” of

the geometry cannot be ignored. The r component of the Laplacian expressed in

spherical coordinates is:

∇2
r =

1

r2

∂

∂r

(

r2 ∂

∂r

)

=
∂2

∂r2
+

2

r

∂

∂r

This is troublesome for anyone who desires a numerical calculation of things like

diffusive fluids, electrostatic potentials or wavefunctions at the origin of a spherical

coordinate system, since computers are usually reticent about taking limits involving

1/r as r → 0. As the reader knows, the computer is not at fault: the 1/r term is not

a true singularity, but a coordinate singularity. The Laplacian exists at the origin,

but its polar representation is no longer valid there.

Often, when solving a numerical problem such as this, one either converts to Carte-

sian coordinates or excludes the origin by setting the boundary ‘close’ and leaving

the matter at that.

Turning a 1-D problem into a 3-D problem is not wise, so using to Cartesian

coordinates is not an option. In addition, the most interesting things that could

come out of this project, like gravitational wavefunction collapse, occur right at the

origin, so excluding even the smallest region about the origin is also not an option.

As a result, one of the things that needs to be dealt with is how to numerically handle

a Laplacian at the polar origin. I developed a method to do this and came up with
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two nice arguments.1

2.2.1 First Argument

Consider the Laplacian operator in the Cartesian basis at the origin:

∇2Λ =
∂2Λ

∂x2
+
∂2Λ

∂y2
+
∂2Λ

∂z2
(r = 0)

This expression can be approximated by using the difference equation for the 2nd

derivative, centered on a sphere of radius ∆r, in each dimension:

∇2Λ =
Λdx − 2Λ0 + Λ−dx

( ∆x )2
+

Λdy − 2Λ0 + Λ−dy

( ∆y )2
+

Λdz − 2Λ0 + Λ−dz

( ∆z )2

=
Λdx + Λ−dx + Λ+dy + Λ−dy + Λdz + Λ−dz − 6Λ0

( ∆r)2
(2.5)

where ∆x , ∆y , and ∆z are all radii of the sphere or radius ∆r. Rotating the axes

gives the same equation. In fact, if we rotate the axes and add the results N times,

we get an area average in the limit as N approaches infinity. The area average of eq.

(2.5) is:

∇2Λ =
6
(

Λ̄ − Λ0

)

( ∆r)2
(2.6)

where Λ̄ is the mean value of Λ on the surface of a sphere. Eq. (2.6) is valid for the

Laplacian at a polar origin for a general function Λ. For the special case of spherical

symmetry, we have the addition condition that Λ̄ = Λdx = . . . = Λ−dz, which enables

us to write:

∇2Λ =
3 [Λdr − 2Λ0 + Λ−dr]

( ∆r)2

1Acknowledgement goes to Jim VanMeter who helped me finish the first argument.
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which is the difference equation for a 2nd order derivative centered at the origin:

∇2Λ = 3
∂2Λ

∂r2
(r = 0) (2.7)

2.2.2 Second Argument

A more heuristic method of determining the expression for the Laplacian at the

polar origin is to expand the ∂rΛ(r) term of the Laplacian in a Taylor series and

consider the limit as r approaches zero.

limit
r→0

2

r

∂Λ

∂r
= limit

r→0

2

r

(

∂Λ

∂r

∣

∣

∣

∣

r=0

+ r
∂2Λ

∂r2

∣

∣

∣

∣

r=0

+
r2

2!

∂3Λ

∂r3

∣

∣

∣

∣

r=0

+ · · ·
)

= 2
∂2Λ

∂r2

where we made use of the vanishing first derivative at the polar origin due to spherical

symmetry. Thus:

∇2Λ =
∂2Λ

∂r2
+

2

r

∂Λ

∂r
= 3

∂2Λ

∂r2
(r = 0)

in complete agreement with eq. (2.7).

2.3 Finite Element Convention

The solution to a 1+1 dimensional PDE can be thought of as a surface, since

the solution is a function of one space and one time coordinate: u = u(r, t). In

discretizing the solution space, we form a 2-dimensional array where each element,

u[j][n], represents the solution at a distance j∆x from the spatial origin and at a

time of n∆t beyond the temporal origin.
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It is common to use subscript and superscript indices to indicate the location of a

solution element within the solution space. In literature, both un
j and uj

n conventions

are used. Throughout this paper, the upper index will be the time index, and the

lower index will be the spatial index. Thus, a solution at position r = j∆r and

time t = n∆t will be denoted as un
j , except in code listings, in which case it will be

represented as u[j][n].

2.4 Discretizing Schrödinger’s Equation: First Steps

This section describes and explains the choice of discretization for eq. (2.2) for the

reader who may not be familiar with obtaining PDE solutions numerically.

Basic calculus describes how to approximate first and second order derivatives,

and in fact, using a Taylor series we can generate derivative approximations to any

order we choose. One can simply ‘plug’ these approximations into eq. (2.2), being

mindful of the expression for the Laplacian at the polar origin, eq. (2.7). With this

method, an integro-PDE solver can be written in a very short time. The benefit of

such a scheme is that it’s an explicit2 algorithm, and therefore, very easy to program

and solve.

Unfortunately, most of these schemes can be shown to be unconditionally unstable3

2An explicit algorithm is one where an unknown quantity is expressed completely in terms of
known quantities. On the other hand, implicit schemes are algorithms where unknown quantities are
expressed in terms of other unknown quantities. Such algorithms usually involve inversion operators
or solving large systems of linear equations.

3In numerical parlance, an unstable algorithm is one which has the property that small errors, like
truncation and precision roundoff, grow geometrically or worse with each timestep. Left unchecked,
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using Von Neumann’s stability analysis.4 Even if the algorithm is stable, this method

of differencing is non-unitary; the wavefunction does not keep its normalization. A

unitary algorithm is desirable, otherwise the wavefunction needs to be renormalized

at each timestep, adding another opportunity for precision loss at every timestep.

Therefore, differencing eq. (2.2) using direct Taylor approximations of derivatives is

ruled out.

A more tenable approach for differencing Schrödinger’s equation can be motivated

by writing down its time evolution:

Ĥψ = ih̄
∂ψ

∂t
(2.8)

where Ĥ is the energy operator in polar coordinates, again assuming spherical sym-

metry:

Ĥ = − h̄2

2m

1

r2

∂

∂r

(

r2∂ψ

∂r

)

+ V ψ

The formal solution of eq. (2.8) is given by:

ψ(r, ∆t) = e−iĤ ∆t/h̄ψ(r, 0)

and, numerically, we would approximate the exponential by its Taylor series in what

the errors in an unstable algorithm can easily exceed the solution itself or even the largest number
the computer can represent internally.

4There are many ways to difference a differential equation. Von Neumann’s stability analysis is a
method to determine the stability of a given numerical algorithm. It is a local method that looks at
the behavior of individual Fourier components of the solution under the algorithm in question. If the
components grow unconditionally, the algorithm is unstable. For linear equations, Von Neumann’s
analysis is a sufficient condition for numerical stability. For non-linear equations, it remains a
necessary condition for stability. See [49], pgs. 836–837.
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is known as the explicit FTCS (forward time, centered space) discretization:5

ψn+1
j =

(1̂− iĤ ∆t

h̄

)

ψn
j (2.9)

However, Von Neumann’s analysis6 shows that this scheme, like many explicit differ-

encing schemes, is unconditionally unstable.

We could also try an implicit differencing scheme, since implicit schemes tend

to be unconditionally stable.7 The implicit scheme is motivated by translating the

future wavefunction back in time:

e+iĤ ∆t/h̄ψ(r, ∆t) = ψ(r, 0)

which can be numerically approximated by:

ψn+1
j =

(1̂ +
iĤ ∆t

h̄

)−1

ψn
j (2.10)

This might have been a good choice, however, eq. (2.10) is only 1st order accurate

in time because of the truncation of the exponential’s Taylor series. We could keep

adding higher order terms in ∆t to gain whatever accuracy we desire, but the more

terms left in the expansion, the more difficult it becomes to generate the inverse

operator. In any event, this method still produces a non-unitary wavefunction.

5See [49], figure 19.1.1 on pg. 836, and pg. 847.
6See [49], pgs. 836 and 847.
7See [49] pgs. 849 and 852.



44

2.5 Cayley’s Form

Explicit differencing the energy operator was discussed first and discounted out-

right as being numerically hopeless for accurate solutions. Then differencing the time

translation operator was discussed, and that seemed to be a better method, but it is

still non-unitary.

One of the best ways to difference eq. (2.8) is with Cayley’s form,8 which can

be loosely thought of as an average of the FTCS scheme given by eq. (2.9), and the

implicit scheme given by eq. (2.10). One way to motivate Cayley’s form is to write

down the tautology that the wavefunction at time n+ 1, translated back by −∆t/2

is equal to the wavefunction at time n translated forward by ∆t/2. In essence, we

have ψn+1 and ψn “meet” at the middle of the timestep:

eiĤ ∆t/2h̄ψn+1
j = e−iĤ ∆t/2h̄ψn

j

Approximating the time translation operators, as we did in eq. (2.9) and eq. (2.10),

[1̂ +
i∆t

2h̄
Ĥ

]

ψn+1
j =

[1̂− i∆t

2h̄
Ĥ

]

ψn
j (2.11)

There is an important difference between Cayley’s scheme eq. (2.11) and the explicit

eq. (2.9) and implicit eq. (2.10) methods. Since the expansion appears on both sides

of the equation, eq. (2.11) turns out to not only be second order in time, but unitary

as well!

The Cayley scheme can be written down in a way that does not require an explicit

8See [49], pg. 853.
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computation of an inverse matrix. Solving eq. (2.11) for the unknown wavefunction:

ψn+1
j =

(1̂ +
i∆t

2h̄
Ĥ

)−1(1̂− i∆t

2h̄
Ĥ

)

ψn
j

=

(1̂ +
i∆t

2h̄
Ĥ

)−1(2̂−
[1̂+

i∆t

2h̄
Ĥ

])

ψn
j

=

(

2

[1̂+
i∆t

2h̄
Ĥ

]−1

− 1̂)ψn
j

Define the Q̂ operator and its inverse as:

Q̂ =
1

2

(1̂ +
i∆t

2h̄
Ĥ

)

⇐⇒ Q̂−1 = 2

(1̂+
i∆t

2h̄
Ĥ

)−1

(2.12)

so that we can write:

ψn+1
j =

(

Q̂−1 − 1̂)ψn
j

= Q̂−1ψn
j − ψn

j

= χn
j − ψn

j

Thus, given the known wavefunction ψn at timestep n, the prescription for obtaining

the unknown wavefunction ψn+1 at timestep n + 1 is:

1. Solve the linear system of equations for the unknown χn from the known ψn:

Q̂χn = ψn

2. Obtain the new wavefunction by subtracting the old wavefunction from χn:

ψn+1 = χn − ψn
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The only thing left to do is find an explicit form for the Q̂ operator, which,

by virtue of containing a Laplacian, is a functional that depends on the choice of

coordinate system.

Those who are familiar with numerical physics may recognize that the work done

here alludes to the Crank-Nicholson algorithm.9 Indeed, the Cayley form and the

Crank-Nicholson algorithm are related: when one differences both sides of Cayley’s

form, a Crank-Nicholson type discretization results. What is done here amounts to

moving both sides of Cayley’s form to one side before discretizing. This form is still,

indirectly, a Crank-Nicholson form.

2.5.1 The Difference Equations

We will now find an explicit form for Q̂ and develop the difference equations used

to solve eq. (2.2). Starting with the general expression for Q̂ (eq. (2.12)), making use

of spherical symmetry, and the expression for the Laplacian at the polar origin (eq.

(2.7)), Q̂ is given by:

Q̂ =
1

2

[1̂ +
i∆t

2h̄
Ĥ

]

=
1

2

[1̂ +
i∆t

2h̄

(

− h̄2

2m
∇2 + V

)]

=























1
2

[1̂+ i ∆t
2h̄
V n

j − ih̄∆t
4m

1
r2

∂
∂r

(

r2 ∂
∂r

)]

r 6= 0

1
2

[1̂ + i ∆t
2h̄
V n

j − 3ih̄ ∆t
4m

∂2

∂r2

]

r = 0

(2.13)

9See [49], pg. 849.
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In light of the prescription to obtain ψn+1 from ψn, we need to find the explicit form

of Q̂ acting on the column vector χn. Because the polar origin must be handled

separately, and special consideration needs to be made for the endpoint of the spatial

grid (which will be explained shortly), three cases of Q̂χn must be considered.

Difference Equations, Case 1: j 6= 0, N−1

Starting with eq. (2.13), Q̂χn away from the origin and the endpoint of the spatial

grid is:

Q̂χn
j =

1

2

[

1 +
i∆t

2h̄
V n

j − ih̄∆t

4m

1

r2

∂

∂r

(

r2 ∂

∂r

)]

χn
j

=
1

2

[

1 +
i∆t

2h̄
V n

j

]

χn
j − ih̄∆t

4m

[

1

r

∂χn
j

∂r
+

1

2

∂2χn
j

∂r2

]

Approximating the first and second order derivatives,

Q̂χn
j

=
1

2

[

1 +
i∆t

2h̄
V n

j

]

χn
j − ih̄∆t

4m

[

1

j∆r

(

χn
j+1 − χn

j−1

2 ∆r

)

+
1

2

(

χn
j+1 − 2χn

j + χn
j−1

( ∆r)2

)]

= − ih̄∆t

8m(∆r)2

(

j−1

j

)

χn
j−1 +

1

2

[

1 +
i∆t

2h̄
V n

j +
ih̄∆t

4m(∆r)2

]

χn
j − ih̄∆t

8m(∆r)2

(

j+1

j

)

χn
j+1

Defining the constants:

R =
∆t

( ∆r)2
K =

ih̄

8m
P =

i∆t

2h̄
(2.14)
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allows us to write the difference equations away from the origin (j 6= 0) and the point

directly before infinity (j 6= N−1) in a compact form:

Q̂χn
j = −KR

(

j−1

j

)

χn
j−1 +

1

2

[

1 + PV n
j + 2KR

]

χn
j − KR

(

j+1

j

)

χn
j+1

(j 6= 0, N−1)

(2.15)

The Difference Equations, Case 2: (j = N−1)

A special case of eq. (2.15) must be considered. A necessary condition of any

square integrable function, like a wavefunction, is that it goes to 0 at infinity, which

provides a common boundary condition. Since infinity is not internally representable

by a computer,10 a numerical physicist must choose a point, far from any expected

dynamics, to represent infinity. If the spatial grid starts at 0 and is of size N , the

gridpoint j = N is the point at infinity. That is, j = N−1 is the point directly

before spatial infinity, and therefore, the last gridpoint that has a non-zero value of

the wavefunction. With this in mind, eq. (2.15) can be used to obtain the difference

equation for the point directly before spatial infinity:

Q̂χn
N−1 = −KR

(

N−2

N−1

)

χn
N−2 +

1

2

[

1 + PV n
N−1 + 2KR

]

χn
N−1 (j = N−1)

(2.16)

10Actually, the IEEE-754 floating point standard does make a provision to represent both infinity
(inf) such as 1/0 and not-a-number (nan) such as sqrt(-1), however, any calculation involving
inf can only result in either inf or nan, so for numerical research purposes, when inf enters our
calculations, the calculation becomes completely worthless.
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The Difference Equations, Case 3: j = 0

Starting with the general expression for Q̂ (eq. (2.13)), and approximating the

2nd order derivative, Q̂χn becomes:

Q̂χn
j =

1

2

[

1 +
i∆t

2h̄
V n

j − 3ih̄∆t

4m

∂2

∂r2

]

χn
j

=
1

2

[

1 +
i∆t

2h̄
V n

j

]

χn
j − 3ih̄∆t

8m

(

χn
j+1 − 2χn

j + χn
j−1

(∆r)2

)

= − 3ih̄∆t

8m(∆r)2
χn

j−1 +
1

2

[

1 +
i∆t

2h̄
V n

j +
3ih̄∆t

2m(∆r)2

]

χn
j − 3ih̄∆t

8m(∆r)2
χn

j+1

Using the constants defined in eq. (2.14), and using the fact that j = 0:

Q̂χn
0 = −3KRχn

−1 +
1

2

[

1 + PV n
j + 12KR

]

χn
0 − 3KRχn

1 (2.17)

Spherical symmetry demands that χ−1 = χ1 at all times, so:

Q̂χn
0 =

1

2
[1 + PV n

0 + 12KR]χn
0 − 6KRχn

1 (j = 0) (2.18)

2.5.2 The Difference Equations: Comments

Because of the different form of the Laplacian at the origin and the boundary

condition at numerical infinity, the explicit form for Q̂χ0
j gives three types difference

equations:

1. The origin: At j=0, eq. (2.18) is used.

2. The point directly before infinity: At j = N−1, eq. (2.16) is used.

3. Elsewhere: At j ∈ [1, N−2], eq. (2.15) is used.
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which generateN linear equations for theN unknown components of the χj vector.

These equations form a sparse matrix in tridiagonal form:
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(2.19)

where the left hand side is the expression of Q̂χn
j . The zeroth coefficients, b0 and c0,

which represent the difference equations at the origin, are generated by eq. (2.18).

The coefficients aN−1 and bN−1, are generated by eq. (2.16). All other coefficients are

generated by eq. (2.15). It is noteworthy that only the bi are time dependent, since

they contain a sum over potential energy, and the potential energy changes from

timestep to timestep.

I initially developed an algorithm to solve tridiagonal systems, but have since

learned that it is already known as the Thomas Algorithm, and is discussed in ap-

pendix C.

2.6 Summary

An informal flowchart of the process to numerically solve the problem as stated

in section 2.1 is given below:
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1. Load the initial condition, eq. (2.1), into the N × 1 vector, ψ0
j .

2. Calculate the potential V 0
j from ψ0

j , as outlined in appendix B.

3. Form the tridiagonal matrix via the difference equations eq. (2.18), eq. (2.15),

and eq. (2.16).

4. Solve the tridiagonal system using the Thomas Algorithm as outlined in ap-

pendix C.

5. Obtain the new wavefunction by performing the subtraction ψ1
j = χ0

j − ψ0
j .

6. Go back to step 2 and repeat until we reach the final timestep.

2.7 Program Details

This section discusses some numerical issues that warrant mention in a nearly

language independent manner.

2.7.1 Initial Condition

The choice of initial condition was based upon what a particle wavefunction ought

to look like. Although the exact profile of a particle wavefunction is unknown, a

Gaussian is a very good guess: it’s plausible, simple, and spherically symmetric,

which takes advantage of the Schrödinger-Newton symmetries. Therefore, it was

decided to use a normalized Gaussian of parameter α to be the initial condition used
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for this project.

ψ(r, 0) =
(α

π

)3/4

e−αr2/2 (2.20)

It’s useful to be able to talk about the width w of the Gaussian being used as

the initial condition for the PDE solver. However, width is a nebulous concept for

something with infinite extent. As Figure 2.1 demonstrates, the width is somehow

inversely proportional to α. Dimensional analysis suggests w ≈ 1/
√
α, which is as

accurate a relation as can be proposed since we’re not even sure that the Gaussian is

the exact particle wavefunction to use in the first place.

Figure 2.1: The Gaussian parameter α is a measure of the wave packet’s

width w. From dimensional analysis, it’s ostensibly proportional to w−2.

The profiles shown use α = 1 on the left, and α = 5 on the right.

There’s an ambiguity in how to relate the width of the Gaussian wavefunction

with the object it represents. For example, what should α be for a 1 kg baseball?

Should 1/
√
α be the diameter of a baseball (.08 m)? The lattice size of the solid

(10−10 m)? Its Compton wavelength (10−42 m)?
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It turns out there is a definitive answer to this question: the de Broglie wavelength.

This will be thoroughly discussed in chapter 4.

2.7.2 Choice of the Point at Infinity

In any numerical situation where an infinity is encountered, the numerical physicist

must deal with it in a manner which is computationally reasonable while ensuring

that the results are accurate. Although the expected dynamics of a self gravitating

particle at the origin is expected to occur near the origin, points far away from the

origin must also be considered for two reasons:

1. However unlikely, there might be interesting behavior far from the origin. After

all, the Schrödinger-Newton equation is highly non-linear.

2. The point at infinity provides a crucial boundary condition. In order for ψ to

be a square integrable function, the wavefunction must go to zero as r → ∞.

There are many clever ways to map an infinite solution domain onto a finite

grid. The method used was chosen for its simplicity and reasonability. The initial

wavefunction is real and has a maximum at r = 0. It is desired to calculate the

location, called rend, where ψ(r, 0) takes on a specified fraction, called rendratio,

of the maximal value. Since ψ(r) = (α/π)3/4e−αr2/2,

rendratio =
ψ(rend)

ψ(0)
= e−αrend2/2 =⇒ rend =

√

−2 ln(rendratio)

α
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rend is the point just before the point at numerical infinity. Thus, rend+dr is consid-

ered numerical infinity, and the boundary condition at infinity, eq. (2.4), is numerically

enforced by ensuring that ψ(rend + dr, t) = 0 for all t.

Although rendratio is not a parameter of a particular physical system, it is an

important program parameter.

• If rendratio is too large (rend is too small) it may be impossible to accurately

enforce the boundary condition at numerical infinity, or an unacceptable amount

of probability will ‘leak out of the universe’. Furthermore, numerical artifacts

may occur. For example, if rend is too close to the origin, ψ may reflect off

infinity and interfere with the dynamics at the origin.

• If rendratio is too small (rend is too large), then the number of spatial grid

elements (N) or the size of individual grid elements (dr) will be too large to be

accurate for the difference equations.

While we’re enforcing ψ to be zero at a point where it really shouldn’t be, and

probability will necessarily leak out with time, choosing a good value of rendratio

will minimize the error associated with these defects to well below that of numer-

ical uncertainty. If, when analyzing the results, dynamics are observed anywhere

near numerical infinity, the program is rerun with rendratio decreased to bring the

dynamics closer to r = 0.
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2.7.3 The Spatial and Temporal Grid

Like rendratio, the grid size N is another program input. Once rend (the point

before numerical infinity) is found, space is divided up into N numerical elements of

size dr:

long double dr = rend / (N - 1);

When using Von Neumann’s analysis on numerical algorithms that solve differential

equations, conditions for numerical stability are usually expressed as a condition on

the size of R = ∆t/( ∆r)2. Large R is associated with numerical instability and small

R is associated with numerical stability. This translates into keeping timesteps ‘small’

compared to the size of the spatial grid. The algorithm used for this project happens

to be unconditionally stable11 for all values of R.12 Although the Crank-Nicholson

algorithm is unconditionally stable, R is used as a program parameter to calculate dt

from dr.

long double dt = R * dr * dr;

A simulation for a time dependent equation would ideally run forever. However,

as with the spatial grid, a temporal cutoff must be declared while hoping that we

don’t miss important dynamics in enforcing the cutoff.

The ending time of the simulation is stored in a variable named endt. Then, the

11See [49], pg. 849.
12Numerical stability does not imply accuracy. We still do not want dt to be too large.
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number of timesteps required to finish the simulation, MaxTStep, is calculated by:13

unsigned long long int MaxTstep = ceill(endt / dt);

The zeroth timestep is defined to be the initial condition.

13The ceill(x) function returns the smallest integer not less than x.
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Chapter 3

Numerical Considerations

This chapter discusses numerical issues and techniques used to generate, analyze and

organize the output of the numerical PDE solver and the associated tools used for

this project.

3.1 Choice of Platform

The PDE solver and associated tools to analyze and organize the data were written

in C and Perl on the GNU/Linux platform. While there are powerful commercial

software packages that can do many of the tasks described in this chapter, I chose

not to use these packages for a number of reasons. First was the issue of cost. Every

tool used with this project was Open Source software run on the free GNU/Linux

platform. Second was speed. A prototype PDE solver was written in Mathematica
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and was found to be well over an order of magnitude slower than C code. Third was

extensibility. As the project progressed, I wanted new functionality and flexibility in

certain numerical tasks. It was easier to get precisely what I wanted by writing my

own code. Fourth was familiarity. I don’t like the black box approach to numerical

research. By writing all my own code, I’m intimately familiar with every aspect of

how data gets generated and analyzed. The last issue was portability. By writing

the project in C on Linux, I was able to run my code everywhere. Even computers

that don’t have Linux installed on them were used by booting a Knoppix Linux disk,

letting the program run, and using ssh to retrieve the data.

3.2 Stateful Numerics

In principle, most problems can be solved on a computer. In practice, some numer-

ical problems cannot be solved in a reasonable amount of time, that is, it would take

far too many timesteps to solve the problem. For numerical time evolution projects

like this one, the concern is that interesting dynamics may occur after either the

program ends or the researcher gives up and quits the program. Often the researcher

knows that the dynamics can’t be reached within a reasonable “wall clock time.”

But once the program ends, for any reason, the run is over. A phenomenal amount

of computational effort goes wasted whenever a system goes down for maintenance,

during a power outage, etc.

I’ve developed a technique that allows a program to be stopped and started at
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will. The program could even be stopped and then started on a different computer.1

With a little effort, it can even be used to extend a job that has reached the final

time step of the simulation. It can even be used to pick up where the program left off

in the case of operating system crash or power outage. I’ve never seen this technique

used, even though it could be of enormous value to all numerical researchers. I call

it stateful numerics and will demonstrate the principle so that others can use this

technique as well.2

To use Stateful Numerics, every program variable and parameter must either be a

preprocessor #define or wrapped in some kind of advanced data type (ADT), like a C

struct or C++ class. In this simplified example, the ADT state type is a declaration

of a struct that will be used to wrap all the program’s run parameter variables:

#ifndef _COMMON_H_

#define _COMMON_H_

#include <tgmath.h>

typedef struct state_type

{

long double time;

1The program needs to be restarted on a computer of the same type of architecture.
2I have since learned that there are software packages, like “Condor”, that perform a similar

function, which is sometimes called “checkpointing”. Although using Condor is much easier than
implementing stateful numerics, installing a large software package on every computer used for com-
putation may not be an option for a researcher, particularly since we often run code on other people’s
machines. Another reason why using stateful numerics would be desirable is compatibility. Condor
was in use at UC Davis but had to be removed since it no longer functioned after a department-wide
upgrade of Redhat Linux.
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long double V[N]; // Potential array

long double complex K, P; // Widely used complex constants

long double complex a[N], b[N], c[N], X[N], wf[N];

unsigned long long int MaxTStep, tstep;

} state_type;

extern state_type *s;

#endif

Note that only variables that exist throughout the entire length of the run need

to wrapped by the ADT. For example, the potential array V[N] needs to exist during

the entire run, however, a local variable i which is used to loop over an array within

the tridiagonal matrix solving subroutine does not need to be wrapped by the ADT.

Generally, any variable that remains in scope during the program’s “main loop” will

need to be wrapped.

Next, a state type needs to be instantiated and initialized. Since every persistent

program variable will be wrapped by s, it is most convenient to make s global,

although this is not necessary. Another variable (not wrapped by s) must be declared

global:

volatile int stop;

The stop variable is essentially boolean and will be used to determine when the
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program should stop. For example, if the program receives a control-c at the keyboard

(if the user wants to halt the program) or if the computer is being shut down and

the program receives the HUP or KILL signal, or if a cron job sends a signal to the

program to tell it to “go to sleep”, the stop variable3 is set to 1 by a user defined

signal callback. Since stop is asynchronously set by callback methods, its value can

change at any time, even when its value is not explicitly set by executing code. To

prevent the compiler from making any assumptions about the value of stop due to

code optimizations, this variable is declared to be volatile.

Next, signal callback functions must be used to arrange for stop to be set to

1 when the appropriate signal is raised. For example, this function sets stop to 1

whenever control-c is pressed:

/* We received a control C. The user wants to stop the program. This means

* setting the global stop variable to "1" so we can finish up the main loop

* and exit gracefully.

*/

void int_callback(int sig_number)

{

if (sig_number != SIGINT) {

fprintf(stderr, "%s:%d %s error: "

"recieved wrong signal number %d not %d\n",

__FILE__, __LINE__, __FUNCTION__, sig_number, SIGFPE);

3Since stop is a global int, it is initialized to zero.
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exit(2);

}

stop = 1;

}

The main loop of the program, the one that does all the calculations, runs until

either the final timestep is reached or if stop is set to a value different from zero:

// Main Loop

//

while ( ! stop && ( s->time < endtime ) )

{

// Do numerical work here.

if ( stop )

Graceful_Shutdown();

}

Thus, when the program is told to stop for any reason, it stops gracefully, meaning,

the current timestep calculation or iteration is first allowed to complete and the

program shuts down before beginning the next timestep calculation or iteration.

This explains how a program knows when and how to gracefully shut down, but

how is the state actually saved? Using command line options, you instruct the pro-
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gram whether the job is being started from scratch or restarted from a previously

interrupted job.

For new jobs, a memory map of the state variable s is created, as illustrated by

this simplified example code which creates a map file named char *name:

// Create a map file

fd = open(name, O_CREAT|O_RDWR, 0644);

// Make sure the file is big enough to hold the contents of s.

lseek(fd, sizeof(*s) - 1, SEEK_SET);

// Create a memory map for s.

s = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED,

name, 0)) == MAP_FAILED);

// Close the map file.

close(fd);

A memory map maps a file into memory, so each access to memory (reading from

a variable or writing to a variable) is actually done on a file residing on a hard drive.

This sounds slow, but isn’t because of caching, and provides two main benefits:

1. The state of the entire program is stored on disk, which we can then use at a

later time to restart the application where it left off.
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2. A disk file this small would be cached in memory anyhow. Using mmap is much

faster than simply writing the variable directly to disk because for disk writing,

the kernel has to transfer a lot of numerical data between user space buffers and

kernel space buffers, and then perform input/output on its buffers. With mmap,

the data is directly written to and read from the mapped memory buffers.

On the other hand, if the program is restarting a previously suspended job, we

simply need to open the memory map file and perform a mmap on it:

if ((fd = open(name, O_RDWR)) == -1) {

die("Failed to open file ’%s’", name);

} else if ((result = mmap(0, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0)) == MAP_FAILED) {

die("Failed to map file ’%s’", name);

}

if ((fd != -1) && close(file))

die("Failed to close file ’%s’", name);

It’s not necessary to munmap() the memory map since memory maps are automatically

unmapped when the program terminates.

Stateful numerics can even save a job during a catastrophic shutdown, like a power

outage: the only “point of failure” is when the memory map buffer is flushed to disk.

Since stateful numerics is rather complicated to implement, it would only be used for
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a complex numerical task. This implies that the program spends an overwhelming

portion of its time doing numerical calculations rather than flushing buffers to disk.

Therefore, the probability that the catastrophic failure occurs during the buffer flush

is quite low.

3.3 Visualizing Time Evolution

When solving a time dependent equation like the Schrödinger-Newton equation,

it’s instructive to be able to visualize the time evolution of the initial condition.

This means making a “movie” of the data. In this section, I describe how that was

accomplished.

The output of the PDE solver, for a given timestep j, is the wavefunction at

t = j∆t. The parameter PLOTS was used to control when data was written to a log

file by using the modulo operator. This is necessary because a particular run can

have 106 or more timesteps. If the current timestep is tstep and the last timestep is

MaxTStep:

while ( time < endtime )

{

// Solve for the wavefunction at current timestep

if (tstep % (MaxTStep / PLOTS) == 0)

Plot_Data();
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Data files were written PLOTS times. Many types of data were saved, but the most

important type of data file was the probability distribution: r versus r2|ψ(r, t)|2. The

probability distributions were saved into files named after the time step, and zero

padded:

void Plot_WFSQ( const long double complex wf[N],

const unsigned long long int tstep )

{

FILE *fp;

long double r;

char filename[STRLEN];

snprintf(filename, STRLEN-1, "%s%011llu", "data/WFSQ/WFSQ.", tstep);

if ((fp = fopen(filename, "w")) == NULL)

die("Plot_WFSQ: Couldn’t open file for writing.");

for(register int j=0; j<N; ++j) {

r = j*dr;

fprintf(fp, "%Le, %Le\n", r, r * r * cabsl(wf[j])*cabsl(wf[j]));

}

fclose(fp);

}
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The zero padded file names are important because it makes directory listings of the

probability distribution files list in time order, for example:

$ ls -1 data/WFSQ

WFSQ.00000000000

WFSQ.00000000333

WFSQ.00000000666

WFSQ.00000000999

WFSQ.00000001332

WFSQ.00000001665

...

Without zero padding, the file names would list in ASCII alphabetical order, as in:

$ ls -1 data/WFSQ

WF.0

WF.1332

WF.1665

WF.333

WF.666

WF.999

...

The first file, WFSQ.00000000000, contains (r, r2 |ψ(r, 0 ∆t)|2) values for each spatial
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gridpoint. The second data file, WFSQ.00000000333, contains (r, r2 |ψ(r, 333 ∆t)|2),

and so on. For example:

0.000000e+00, 0.000000e+00

3.925832e-12, 2.122586e+07

7.851663e-12, 8.462125e+07

1.177749e-11, 1.893443e+08

1.570333e-11, 3.340076e+08

1.962916e-11, 5.167007e+08

...

A Perl program was written to generate a gnuplot script. Since directory listings of

the data files are time ordered, plots of the data files are displayed in time order.

The Perl program grew to be quite sophisticated (over 1000 lines of Perl code), and

allowed me to scale axes, focus on individual data points, set zoom level, set graph

labels, set pauses, run the evolution backwards, and much more.

The last few lines of the Perl plotter were responsible for generating the gnuplot

script that displays the probability distribution time evolution files in rapid succession,

simulating a movie of the PDE’s evolution:

# Erase previous plots and open a new plot file.

unlink("$var{dir}/makeplot");

open(FP, ">$var{dir}/makeplot")

or die("Can’t open $var{dir}/makeplot for writing");
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# Obtain a list of timesteps from data/WF.

my @files = glob "$var{dir}/WFSQ/WFSQ*";

Print_Interesting_Stuff();

LOOP: foreach my $file ( @files )

{

my $tstep = join ’’, $file =~ /WFSQ.([0-9]+)/;

next LOOP if ( $tstep * $run{dt} < $var{min_time} );

Create_A_Plot($tstep, \%run, \%var);

}

system("gnuplot", "$var{dir}/makeplot");

The last line calls gnuplot to generate the movie. A sample of the Perl program’s

output shows the type of input that gnuplot expects:

$ head -12 makeplot

set xrange [0:2.5e-8]

set yrange [0:3e8]

set label 1 ’rend=9.10456277e-08 dt=1.00000000e-07, dr=2.27670987e-11’

at graph .42, .81
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set label 2 ’tstep=00000000000, t=0’ at graph .42, .84

set pointsize 1

plot ’data/WFSQ/WFSQ.00000000000’, ’data/FPSQ/FPSQ.00000000000’

set xrange [0:2.5e-8]

set yrange [0:3e8]

set label 1 ’rend=9.10456277e-08 dt=1.00000000e-07, dr=2.27670987e-11’

at graph .42, .81

set label 2 ’tstep=00000000333, t=3.33e-05’ at graph .42, .84

set pointsize 1

plot ’data/WFSQ/WFSQ.00000000333’, ’data/FPSQ/FPSQ.00000000333’

The Perl plotter was used to generate most of the graphs used in this dissertation.

This technique of visualizing time evolution data can be used easily and freely on any

operating system that supports Perl and gnuplot, which includes any modern major

operating system.

3.4 Numerical Accuracy

A very wide assortment of techniques was employed to ensure the accuracy of

these results. Accuracy of the solutions started with the choice of algorithms and

went on to include understanding details of the C library and architectures of the

computers used to run the PDE solver.
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3.4.1 Precision

The long double datatype was used for every real floating point variable and

long double complex was used for all complex floating point variables. On the

majority of the computer architectures used, this gives 18 digits of precision and can

store powers of 10 between 104932 and 10−4931. This precision and range of exponents

is much more than enough for this project, which by virtue of various combinations

of h̄ and G can be numerically demanding.

3.4.2 Accuracy

It is not enough to use stable algorithms and double precision variables and ex-

pect the solutions to be correct. Highly precise results are meaningless if they’re

not accurate. Consider the following code which attempts to print a number that’s

representable by a long double:

int main(void)

{

long double trouble = 2.0 * pow(10, 4931);

printf("Trouble: %Le\n", trouble);

return 0;

}

The output of this test program is:
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$ gcc -W -Wall foo.c -lm; ./a.out

Trouble: inf

What happened to the long double representation of 104931? For all its wonderful

traits, C is not a forgiving language and is certainly not as “user friendly” as, say,

Fortran-90. The function pow() is defined to accept doubles and returns doubles.

Since 2 × 104931 is not representable as a double, the result was infinite despite the

fact that the result was stored in a long double. To correct this, the programmer

should either use the new so-called ‘type generic’ mathematics or call long double

versions of the relevant math functions, like powl(). Every line of code was scanned

for such sources of error.

The Use of Floating Point Signals

Another safeguard against numerical errors was the use of IEEE signals. A com-

puter’s CPU and operating system can catch many common floating point errors like

FE OVERFLOW (floating point overflow). In numerical work, it’s desirable to catch these

signals since once a floating point exception is generated, the rest of the program’s

output can no longer be trusted. On GNU/Linux, floating point signals are turned

off by default, so they have to be explicitly enabled via code like:

#include <fenv.h>

// By default all FPE’s are masked off... "fix that".
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//

void fpe_trap_enable(void)

{

/* Enable FPE’s. By default all FPE’s will not raise a signal when

* they happen. See fenv.h for magic constants.

* FE_INEXACT inexact result - don’t do this!

* FE_DIVBYZERO division by zero

* FE_UNDERFLOW result not representable due to underflow

* FE_OVERFLOW result not representable due to overflow

* FE_INVALID invalid operation

*/

feenableexcept(FE_DIVBYZERO | FE_UNDERFLOW | FE_OVERFLOW | FE_INVALID);

}

Rather than let inf, nan, underflowed or overflowed floating point numbers propagate

through the calculations, this code arranges for the program to halt which is desirable

since the worst case scenario would be for the exceptions to generate incorrect results

which are not ‘obviously’ incorrect.

The use of signals and callbacks can be used, minimally, to end the program and

print the cause of the exception. A sophisticated system can be employed to print

the exact file, function, line number, and variable that caused the exception to occur.

Without signals, the researcher often has no way of knowing that the program is

generating faulty output until the program runs its course, which can take a very long
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time. In the worst case scenario, the incorrect numerical output is indistinguishable

from a reasonable solution. This code illustrates how to arrange for a user written

function named fpe callback() to be executed whenever a FPE is generated:

/* Setup a signal handler for SIGFPE */

struct sigaction action;

memset(&action, 0, sizeof(action));

action.sa_sigaction = fpe_callback; // which callback function to call

sigemptyset(&action.sa_mask); // other signals to block

action.sa_flags = SA_SIGINFO; // give details to callback

if (sigaction(SIGFPE, &action, 0))

die("Failed to register signal handler.");

And this is a listing for fpe callback(): an example of what can be done once a

FPE is generated. Here, the cause of the FPE is printed so I can study what the

problem was and avoid it in the future:

// We generated a SIGFPE. No sense in continuing with the program

// since our numbers are now garbage. Just print a message and die.

//

void fpe_callback(int sig_number, siginfo_t *info, void *data)

{
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data = data; /* used for SIGIO (see F_SETSIG in fcntl) */

if (sig_number != SIGFPE) {

fprintf(stderr, "%s:%d %s: recieved wrong signal %d not %d\n",

__FILE__, __LINE__, __FUNCTION__, sig_number, SIGFPE);

exit(2);

}

fpe_print_cause(stderr, info);

exit(1);

}

void fpe_print_cause(FILE *file, siginfo_t *info)

{

fprintf(file,

"FPE reason %d = "\%s", from address 0x%X\n",

info->si_code,

info->si_code == FPE_INTDIV ? "integer divide by zero" :

info->si_code == FPE_INTOVF ? "integer overflow" :

info->si_code == FPE_FLTDIV ? "FP divide by zero" :

info->si_code == FPE_FLTOVF ? "FP overflow" :

info->si_code == FPE_FLTUND ? "FP underflow" :
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info->si_code == FPE_FLTRES ? "FP inexact result" :

info->si_code == FPE_FLTINV ? "FP invalid operation" :

info->si_code == FPE_FLTSUB ? "subscript out of range" :

"unknown",

(unsigned int) info->si_addr

}

The one SIGFPE signal that was not useful was FPE INEXACT. Because of how floating

point numbers are internally represented, many common floating point operations

will raise the FPE INEXACT flag. Even a calculation like 6.0L / 3.0L, which yields

an exact integer result, yields an inexact floating point result.

Coding Techniques

Effort was put into learning good numerical coding techniques. For example,

what engineers call “feedback” is an often used optimization while programming but

happens to be detrimental when dealing with numerical calculations. A simplified

example of feedback is the common paradigm of incrementing a floating point variable

by: t = t + dt or equivalently t += dt. Rounding errors are compounded with each

timestep, and the error in the floating point variable is proportional to the number of

timesteps. For this example, a better solution is to use an int variable representing

the timestep; there is no error in integer arithmetic.

As another example of using defensive coding techniques to minimize the error
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in the solution, consider the following program which attempts to print the cosine of

π/2 divided by some small number:

int main(void)

{

// long double

long double varl = cosl(M_PIl / 2.0L);

printf("%Le\n", varl);

varl /= 1.0E-20L;

printf("%.12Le\n", varl);

return 0;

}

The answer, of course, is zero, but the output is surprising:

$ ./a.out

-2.710505e-20

-2.710505431214e+00

Although cos(π/2) is numerically small, a division or multiplication operation can

turn a numerically insignificant number into a number as significant as one pleases.

Therefore, it’s not enough to simply translate an algorithm into code; one needs to

consider the terms in the algorithm and try to arrange the arithmetic to minimize

this effect.
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The Compiler

One normally does not consider the compiler itself to be protection against nu-

merical error, but it was found that in addition to having excellent optimization

capabilities, gcc was also an effective way to protect the code from human error. C

is an unforgiving language, and compiler warnings were extremely useful. Here is an

excerpt from the Makefile which was used to turn on compiler warnings:

WARN = -Wall -Wstrict-prototypes -Wmissing-prototypes -Waggregate-return \

-W -Wpointer-arith -Wcast-qual -Wcast-align -Wmissing-declarations \

-Wnested-externs -Wredundant-decls -Wwrite-strings -Winline -Werror

CFLAGS = $(WARN) -std=c99 -g3 $(OPTIMIZATION_FLAGS)

Discrepancy Plots

A necessary requirement for the PDE solver to calculate correct solutions to the

Schrödinger-Newton equation is being able to calculate correct solutions to the free

particle. This was important when testing the algorithms and difference equations,

but is also important when running jobs since one cannot expect accurate solutions

for all values of the input parameters. For example, there are bounds on variables like

dr and dt, and outside these bounds, the computed solution is no longer accurate.

To help verify accuracy for a given run, the PDE solver was re-run with the

same input parameters but with the potential turned off. The resulting numerically

computed free particle was compared to the analytic free particle to see that the
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difference equations were generating accurate solutions. Although this doesn’t ensure

a correct solution, it helps build confidence in its validity.

One method of comparing the numeric and analytic free particle wavefunctions

was to compute the discrepancy in the probability distributions at time tj = j∆t,

defined as:

δprobj = 4π

N
∑

i=0

r2
i

(

∣

∣ψ(ri, tj)|2−
∣

∣ψn(ri, tj)|2
)

∆r

where ψ(ri, tj) and ψn(ri, tj) are respectively the analytic and numeric free parti-

cles. Unlike direct comparison of the wavefunctions, there’s no question of an arbi-

trary constant phase that might appear in the numerical solution, and a probability

discrepancy that’s small compared to 1 means an accurate homogeneous solution.

Figure 3.1 shows an example probability discrepancy plot for m = 9.1 × 10−31 kg

and α = 1.0 × 100 m−2. Although the discrepancy monotonically increases, by the

millionth timestep, the overall discrepancy is still quite small.
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Figure 3.1: Probability discrepancy versus timestep for m = 9.1 × 10−31 kg

and α = 1.0 × 100 m−2. Although the error grows monotonically, after a

million timesteps, it’s still very small.
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3.4.3 Normalization

Normalization was a non-issue. As discussed in chapter 2, the Cayley form has

unitarity built into it. As can be seen in Figure 3.2, the numerically computed

gravitational wavefunction retains its normalization quite well.
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Figure 3.2: Numerical wavefunction norm versus timestep for m =

9.1 × 10−31 kg and α = 1.0 × 100 m−2. Even after a million timesteps,

the numerical wavefunction retains its normalization quite well. Unitarity

is one of the benefits of using the Cayley discretization method to numeri-

cally solve a Schrödinger equation.
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3.4.4 Reflection Off Numerical Infinity

Even when numerical infinity is placed too close to the origin, the numerically

computed wavefunction retains its normalization, even while the analytic wavefunc-

tion “leaks” out of the simulation. Figure 3.3 shows the time evolution of two wave-

functions. The green curve (‘x’) represents the analytic free particle and the red

curve (‘+’) represents the free particle computed by the difference equations. The two

wavefunctions are identical until the numerical wavefunction hits numerical infinity.
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Figure 3.3: A wavefunction reflecting off numerical infinity. Even wavefunc-

tions that are highly localized near the origin have infinite extent, so this

behavior always occurs. However, if numerical infinity is “far” enough, this

effect does not have a significant role in the main body dynamics.
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Notice that the probability for the analytic free particle wavefunction “leaks” out

of the universe. This is because it was derived (see appendix D) on the semi-infinite

interval [0,∞), that is, infinity is the “true” spatial infinity.

However, the wavefunction generated by the difference equations reflects off the

far boundary of the simulation. This is because the Neumann boundary condition at

numerical infinity causes the wavefunction to reflect back towards the origin. A real

wavefunction that managed to reach true spatial infinity would also have to behave

this way as well.

3.5 Speed

The PDE solver took a very long time to run, so optimizing for speed was im-

portant. The most effective speed optimization was aggressively using pre-processor

#define’s in the place of automatic and static/global variables. Not only did ex-

tensive use of pre-processor constants reduce the required memory thumbprint, but

it reduced the “wall-clock time” that the program took to complete by well over an

order of magnitude. It also had the effects of safely making commonly used variables

global in scope and reducing the work required to implement stateful numerics since

literal constants do not need to be wrapped by the state ADT.

The downside is that the PDE solver had to be recompiled for each minor change

of input parameter (as opposed to taking input via command line options), but the

benefits in using pre-processor constants whenever possible was more than worth this
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minor inconvenience.

The gcc compiler itself provides a wealth of highly effective speed optimizations.

However, the vast array of compiler options can get out of hand for a numerical

researcher. Unfortunately, one needs to be somewhat of an expert to understand

many of the more powerful optimization options, especially since they come with

warnings like “may produce incorrect results”. Much effort was put into determining

which set of compiler optimization flags were optimal and safe to use.

Benchmarking, profiling, and tuning is an important part of any long-term nu-

merical project. On Linux, benchmarking is done with bash’s4 time command, which

is invoked with the name of an executable. The output of time is a set of three

numbers:

$ time ./avatar

real 2m47.476s

user 2m47.143s

sys 0m0.094s

The important time here is “user” which is the amount of time that the computer

spends on the application to be benchmarked. The “real” time indicates the wall

clock time it took for the application to finish. The “sys” time indicates how long the

computer spent within system calls while executing the application. The real time

changes with system load, and the sys time is simply not relevant here.

Compiler optimization is a heuristic pursuit: turning all the options “on” is no

4bash is the default shell that comes with GNU/Linux.
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guarantee that the code will run faster than turning only a few options on. In fact, in

some instances, a particular optimization can make the code go slower. A common

example is loop unrolling.5 There are situations where loop unrolling slows down

the program, and only experimentation will reveal whether that optimization is right

for a given piece of code. As another example, the gcc option -O1 is the lowest

optimization level while -O3 is the most aggressive. However, as can be seen below,

the program actually ran slower with -O3 than with -O1 except when combined with

-ffast-math. The following table lists some benchmark results with various gcc

optimization options for a short run.6 Although the absolute times are unimportant,

5Unrolling loops when the number of iterations can be determined at compile time.
6The run was performed several times to make sure the timing is accurate.
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the relative timings for each group of optimizations are very interesting.

Optimization Flags User Time

none 2 min 48.674 sec

-O1 2 min 12.570 sec

-O2 2 min 20.114 sec

-O3 2 min 20.309 sec

-O3 -funroll-loops 2 min 18.888 sec

-O3 -funroll-loops -mcpu=athlon-xp 2 min 18.957 sec

-O3 -funroll-loops -march=athlon-xp 2 min 16.599 sec

-O1 -funroll-loops -march=athlon-xp -ffast-math 0 min 30.918 sec

-O2 -funroll-loops -march=athlon-xp -ffast-math 0 min 28.702 sec

-O3 -funroll-loops -march=athlon-xp -ffast-math 0 min 28.638 sec

A 79% decrease in run time was achieved through the use of -ffast-math, however,

this option carries an ominous sounding warning in the gcc man pages:

This option should never be turned on by any -O option since it can result
in incorrect output for programs which depend on an exact implementa-
tion of IEEE or ISO rules/specifications for math functions.

However, this option is almost always safe to use. As a general rule of thumb, if

you do not know the details of the IEEE floating point number format, and you are

not writing code that relies on determining convergence by calculating precise error

intervals (in other words code that just happens to use floating point numbers) then
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this option is safe to use. It may interfere with graceful handling of inf and nan, but

all numerical code really ought to catch these conditions with signals (as outlined in

section 3.4.2) and halt the program when they occur.

The -mcpu and -march options are processor specific optimization flags. The

-mcpu flag optimizes the executable for a specific architecture but does not use in-

struction sets that are unique to that architecture. Thus, code compiled with -mcpu

will run on entire families of architectures (e.g. IA32) but is tuned for a particular

CPU. The -march flag produces stronger optimizations in the sense that it makes use

of architecture dependent instruction sets: code compiled with -march will only work

for the platform it was compiled for.

3.5.1 Crestplots

An alternative way of analyzing the time evolution behavior of the gravitational

wavefunction is via “crestplots”. After a run was finished, a Perl program was ex-

ecuted which found the most probable location of the particle7 which amounts to

finding the peak of |rψ(r)|2. The program then created a plot so the time evolution

could be studied. The crestplot, along with a knowledge of ∆t can be used to de-

termine the speed and acceleration of the collapsing or expanding wavefunction. For

example, Figure 4.3 shows the crestplot for a collapsing gravitational wavefunction

(the red ‘+’) and an expanding free particle wavefunction (the green ‘x’) as a func-

7Or particles, if the free particle was also being plotted to provide something to compare the
numerical wavefunction to.
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tion of timestep. The horizontal axis is timestep and the vertical axis is distance

from the origin in meters. In this figure, the free particle appears stationary, while

the gravitational particle becomes more and more likely to be found precisely at the

origin.
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Chapter 4

Results

4.1 Summary of Numerical Results

The Schrödinger-Newton equation was repeatedly solved using a fixed Gaussian

parameter α0 = 5 × 1016 m−2 with various particle masses. Each program run com-

puted the wavefunctions for both the self-gravitating particle ψg and the analytically

computed free particle ψfp with the same mass and initial condition. The free particle

provided a known and familiar benchmark with which to compare ψg. The numeri-

cally computed self-gravitating wavefunction was observed to exhibit four main types

of behaviors depending on the particle mass: stationary, seemingly chaotic, collapsing,

and expanding.

The raw numerical results are presented in Table 4.1. In the next section I will

go into the wavefunction behavior in more detail.
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Mass Behavior T (ns)

Above 8.0 × 10−13 kg
Stationary N/A

Above 4.8 × 1014 u

5.0 × 10−13 kg to 8.0 × 10−13 kg
Seemingly chaotic N/A

3.0 × 1014 u to 4.8 × 1014 u

m0high = 4.9 × 10−13 kg
Largest mass to collapse 100.0

m0high = 2.9 × 1014 u

m0 low = 1.3 × 10−23 kg
Smallest mass to collapse 1.0

m0 low = 7.8 × 103 u

3.2 × 10−24 kg to 1.2 × 10−23 kg
Seemingly chaotic N/A

1.9 × 103 u to 7.2 × 103 u

7.5 × 10−26 kg to 3.1 × 10−24 kg
Slow expansion N/A

4.5 × 101 u to 1.9 × 103 u

Below 7.5 × 10−26 kg Indistinguishable from free

particle
N/A

Below 4.5 × 101 u

Table 4.1: Bounding masses that induce wavefunction collapse along with

collapse time T .
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4.2 The General Characteristics of Wavefunction

Behavior

Below a certain mass, the numerical solutions to the Schrödinger-Newton equa-

tion generally resembled free particle solutions except within a mass range, where the

solutions differed remarkably. Within a range of masses, ψg was observed to sponta-

neously localize at the origin, that is, wavefunction collapse due to self-gravitational

interaction. At the fringes of this range of masses, the wavefunction would “dance”

(for lack of a better term) as if “trying to decide” whether to follow the free particle

solution or collapse to the origin.

4.2.1 Stationary Behavior

For relatively large mass (m > m0high), ψg appeared stationary for any reasonable

number of timesteps, or moved at such a slow rate that the program would have to run

for prohibitively long times to determine what ψg would eventually do. A stationary

wavefunction may eventually collapse, expand, or even remain stationary—the final

behavior is unknown.

Figure 4.1 shows a crestplot for a particle of mass 1.0 × 10−11 kg (6.0 × 1015 u)

and Gaussian parameter α = α0 as a function of timestep for a run in which ψg was

stationary. The green curve (marked by “x”) shows the free particle result while the

red curve (marked by “+”) shows the self-gravitating particle.
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Figure 4.1: A crestplot showing the most probable particle location versus

timestep for m = 1.0 × 10−11 kg (6.0 × 1015 u). The free particle expands

while the self-gravitating particle remains stationary. Even for wavefunc-

tions evolving under the Schrödinger-Newton equation that do not collapse,

their expansion relative to a free particle is always retarded.

Part way though the simulation, ψfp spread by a miniscule amount whereas ψg re-

mained stationary, and it’s unclear how long one must wait for ψg to do anything.

For results like this one, it will be said that the behavior of the Schrödinger-Newton

equation is simply unknown for the pair (α0, m).
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4.2.2 Wavefunction Collapse

For intermediate masses (m0 low ≤ m ≤ m0high), ψg was observed to collapse to

the origin.

An important consideration while analyzing the results of the PDE Solver was

the question of “what constitutes a collapse.” When a collapsed wavefunction was

suspected, the run was repeated multiple times with the number of spatial gridpoints

increased. Wavefunction collapse for a given set of run parameters was declared if the

most probable location of the particle reached the second spatial gridpoint (r = ∆r)

independent of the number of spatial gridpoints. Once the probability peak reached

∆r, the numerical simulation could no longer be trusted, since Ĥψ(ri, t) is a function

of ψ(ri−1, t) and ψ(ri+1, t). The only way to get more information about the dynamics

at the origin is to increase the number of spatial gridpoints by decreasing ∆r (which

can be achieved by increasing N or decreasing rendratio) and ∆t. A fairly typical

example of observed collapse is illustrated in Figure 4.2 which shows a collapse for

α = 1.0 × 1020 m−2, m = 1.0 × 10−15 kg (6.0 × 1011 u).
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Figure 4.2: Profile of a typical collapsing wavefunction: the most probable

location of the particle limits to r = 0 and the bulk of probability density

shifts towards the origin.

Figure 4.3 shows the most probable location of ψg and ψfp as a function of timestep
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for the same collapsing system shown in Figure 4.2. The change in concavity for ψg

is interesting in that it suggests that as the probability distribution gets closer to the

origin, some effect becomes larger that tries to prevent further collapse. Whether

a self-gravitating particle actually collapses or not depends on how large this effect

becomes.
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Figure 4.3: Crestplot for the collapsing system shown in Figure 4.2. The

change in concavity of the graph suggests that as the wavefunction collapses,

some effect that retards collapse tends to grow larger.

4.2.3 Seemingly Chaotic Behavior

At constant α0, as the particle mass is decreased to approach m0high from above,

or is increased to approach m0 low from below, ψg is observed to exhibit fluctuating
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behavior. This behavior can be characterized in any number of ways: “dancing”

about a single point, oscillation of height, or travelling waves riding on top of the

wavefunction’s profile. In most cases, it looks like the wavefunction is “trying to

decide” whether to collapse or follow the free particle solution. One example of

this behavior can be seen in Figure 4.4. In this case, the most probable particle

location oscillates, at first slowly but with rapidly increasing amplitude, about the

point r0 ≈ 2.5 × 10−12 m. Additionally, small waves of probability form at the peak

and travel in both directions from r0, riding the probability distribution’s profile like

small signals on top of a carrier wave. These probability waves increase in number

and height until ψg takes on the appearance of a fractal.
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Figure 4.4: Gravitational wavefunction becoming more unpredictable with

time, superimposed on a free particle wavefunction of the same mass and

initial condition. The number and intensity of peaks increase with time

until the wavefunction takes on the appearance of a fractal (everywhere

continuous, nowhere differentiable).
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A crestplot of this particular example of seemingly chaotic behavior, displayed in Fig-

ure 4.5, doesn’t show the small signal waves of probability, but does show oscillation

with increasing amplitude of the main probability distribution.
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Figure 4.5: Crestplot for the seemingly chaotic dynamics illustrated in Fig-

ure 4.4. The most probable particle location oscillates about the free parti-

cle’s peak. The amplitude of these oscillations increases with timestep until

the simulation’s profile is no longer recognizable as a wavefunction.

I will not comment deeply on the physical relevance of the observed fluctuating behav-

ior. If semiclassical gravity is indeed a true theory of gravitation, there may be new

and profoundly interesting physics here, but it may also be the case that this behav-

ior is a numerical artifact. In any event, it appears that the (α,m) pairs that induce
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seemingly chaotic behavior may be exhibiting some kind of instability or resonance

in the solution space of the Schrödinger-Newton equation. It would be interesting to

investigate whether this behavior could be reproduced with different types of initial

conditions.

4.2.4 Expansion

For α = α0, below m = m0 low, ψg expands. For masses close to m0 low, this

expansion is slower than the expansion for a free particle wavefunction of the same

mass and initial condition, as demonstrated in Figure 4.6. In this figure, ψg and ψfp

are plotted together to compare their behavior. At the beginning of the simulation,

they have the same initial condition, but ψg expands less rapidly. The potential well

of ψg retards the expansion, but for this (α,m) pair, the walls of the potential well

are not steep enough to induce collapse.
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Figure 4.6: Self-gravitating particle lagging behind a free particle wavefunc-

tion. As the mass decreases, the gravitational wavefunction becomes indis-

tinguishable from a free particle. However, as the particle mass increases,

the expansion lag between the gravitational and free particle increases until

the gravitational wavefunction begins to collapse towards the origin.
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It is interesting to look at Figure 4.7, the crestplot for this run, which shows the most

probable location of each particle as a function of timestep.

 1e-10

 1.5e-10

 2e-10

 2.5e-10

 3e-10

 3.5e-10

 4e-10

 4.5e-10

 5e-10

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06

m
os

t p
ro

ba
bl

e 
lo

ca
tio

n 
of

 p
ar

tic
le

 (
m

)

timestep

most probable location of ψg
most probable location of ψfp

Figure 4.7: Crestplot for self-gravitating particle lagging behind a free par-

ticle wavefunction. Note the initial short-lived collapse before the lagging

expansion occurs. This is a fairly typical property of all Schrödinger-Newton

wavefunctions that expand.

As expected, both wavefunctions expand, with ψg “lagging” behind ψfp, however,

there is one remarkable feature which isn’t readily apparent from time evolution plot.

The self-gravitating particle actually begins to collapse towards the origin, but at

around timestep 600,000, reverses itself and begins to expand. This is actually a

general feature of masses near m0 low. For smaller particle masses, this “bounce”
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at the origin ceases (to within the precision of the simulation). At masses much

lower than m0 low, ψg becomes numerically indistinguishable from the free particle

wavefunction. This makes sense, since the smaller the particle’s mass is, the more

shallow the potential well will be.

4.3 Generalizing the Results

As discussed in section 4.1, a Gaussian initial condition under the Schrödinger-

Newton equation collapsed to the origin for a range of masses between m0high and

m0 low. For masses just outside this range, the evolution of ψg was observed to be

seemingly chaotic. For masses above this range, ψg was stationary (meaning unknown

eventual behavior). Lastly, below this range, ψg expanded. This expansion was slower

than the free particle, but in the limit as m → 0, ψg → ψfp since the m2 term in the

potential ensures that the Schrödinger-Newton equation reduces to the free particle

equation in the low mass limit.

These results were obtained for a single Gaussian parameter α0. To get a full

understanding of the solution space of the Schrödinger-Newton equation, we would

need to run the program for all masses for every α. Unfortunately, the non-linear

nature of this equation means that we lose a lot of the mathematical muscle that has

been developed for the study of differential equations; in particular, we cannot form

new solutions from superpositions of known solutions. It also means we cannot gain

insight into solutions for different initial conditions, since initial conditions that are
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“close” are not guaranteed to yield solutions that are also “close”.

However, the scaling properties of the equation turn out to be of immense help

here. From the scaling properties of the Schrödinger-Newton equation, discussed in

appendix A, we can use eq. (A.5) to view m0high and m0 low as functions of α. This

gives two curves, mhigh(α) and mlow(α):

mhigh(α) = m0high

(

α

α0

)1/6

mlow(α) = m0 low

(

α

α0

)1/6

(4.1)

We can use these equations and the α0 results to obtain mass ranges for stationary,

fluctuating, collapsing, and expanding ψg for arbitrary α. This enables us draw

Figure 4.8, a qualitative1 graph of α versus m, displaying the regions of the various

behaviors.

The vertical dashed line represents µ = 1: the actual numerical data taken at

α = α0. Changing α (moving horizontally in the figure) means changing the scale

parameter µ according to α = µ6α0. The two curves represent the scaled values of

m0high and m0 low for various values of µ (or α). The gravitational wavefunction

collapses for all (α,m) pairs that fall between these two curves.

1The curves are not drawn to scale.
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Figure 4.8: The (α,m) solution space for the Schrödinger-Newton equation

exhibiting the regions of behavior. The dashed vertical line represents the

data taken at constant α = α0 for various masses. Any (α,m) pair that

falls between the two curves yields a solution that collapses to the origin.
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4.4 Visualizing Constant Mass

A researcher wanting to perform an experiment that tests the validity of the

predictions of semiclassical gravity is not interested in constant α for various masses.

In practice, a researcher would have a particular object in mind, like a C70 molecule,

and would want to know what kind of behavior semiclassical gravity predicts as a

function of α. Rather than being interested in vertical lines (constant α, varying m)

of Figure 4.8, he would be interested in horizontal lines (constant m, varying α).

-
α

6
m

α− α+

Stationary Wavefunction

Collapsing Wavefunction

Expanding Wavefunction

T decrease
s −→ µ and v increase −→

T decreas
es −→ µ and v increase −→

m′

Figure 4.9: The (α,m) solution space for the Schrödinger-Newton equation

exhibiting the regions of behavior. This diagram emphasizes the solution

space for a line of constant mass, which is what a researcher doing a matter-

diffraction experiment would be interested in.
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From Figure 4.9 we can see the predictions that semiclassical gravity makes for a

particle wavefunction for a mass m′:

• For α < α−, my research makes no prediction.

• For α− ≤ α ≤ α+, the particle wavefunction should collapse.

• For α > α+, the particle wavefunction should expand.

The numerical values of α± can be obtained by inverting eq. (4.1):

α−(m′) =

(

m′

m0high

)6

α0 α+(m′) =

(

m′

m0 low

)6

α0

which, stated numerically in SI units,

α−(m′) =
(

3.6 × 1090 kg−6m−2
)

m′6 α+(m′) =
(

1.0 × 1054 kg−6m−2
)

m′6

and in unified atomic mass units:

α−(m′) =
(

8.4 × 10−71 u−6m−2
)

m′6 α+(m′) =
(

2.2 × 10−7 u−6m−2
)

m′6

This leads to the pragmatic question: “Physically, what is α?” As discussed in

section 2.7.1, there are a few good guesses one can make, however, there appears to

be a definitive answer to this question.

As discussed in section 1.5, the most recent experiments in matter-wave diffrac-

tion have used a Talbot-Lau interferometer in which a wave (here, a matter-wave)
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impinging on a diffraction grating displays the Talbot effect: an aliased image of the

diffraction grating is created at a precise distance from the diffraction grating given

by:

LT =
d2

λ

where d is the grating constant (spacing between the slits) and λ is the wavelength

of the impinging wave. Getting this distance correct is critical to the success of the

recent matter-wave experiments, since if it’s wrong, the aliased image of the diffraction

grating will not occur. In all cases, the correct Talbot distance was obtained using the

de Broglie wavelength. Therefore, the width of a particle represented by a Gaussian

wavefunction of parameter α is precisely the de Broglie wavelength:

w ≈ 1√
α

= λde Broglie =
h

mv

which is interesting because it tells us that the width of the initial probability distribu-

tion is completely dependent on the particle’s mass and speed and has no dependence

on the physical extent of the particle. The connection between the width of the

wavefunction and the de Broglie wavelength indicates that although we’ve viewed the

wavefunction behavior as a function of (α,m), we could also view the wavefunction

behavior as a function of (v,m), where v is the speed of the particle as it enters the

interferometer. Figure 4.10 shows this relation.
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Figure 4.10: The (v,m) solution space for the Schrödinger-Newton equation

exhibiting the regions of behavior. This diagram emphasizes the equivalence

between the Gaussian parameter α and particle speed v for a line of constant

mass, which is what a researcher doing a matter-diffraction experiment

would be interested in. This type of diagram would be used to obtain the

collapse times for the particle travelling at the boundary collapse speeds.
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By the de Broglie equation, v± are given by:

v−(m′) =
h

m′

(

m′

m0high

)3
√
α0 v+(m′) =

h

m′

(

m′

m0 low

)3 √
α0

It may be more informative to restate this key result numerically in terms of SI units,

v−(m′) =
(

1.3 × 1012 m/kg2 · s
)

m′2 v+(m′) =
(

6.7 × 1043 m/kg2 · s
)

m′2

or, for researchers who think in terms of atomic masses, the unified atomic mass unit:

v−(m′) =
(

3.5 × 10−42 m/u2 · s
)

m′2 v+(m′) =
(

1.9 × 10−10 m/u2 · s
)

m′2

One last issue to address would be the time it takes for the collapse, if a collapse

happens. We can easily find the collapse times T− and T+ at the collapse behavior

boundary speeds v− and v+ as visualized on Figure 4.10. Researchers interested in

the collapse times for speeds between v− and v+ would need to investigate that area

of the parameter space more thoroughly. However, it turns out that this may not be

necessary, as will be demonstrated shortly. The boundary times for collapse can be

obtained from the time scaling discussed in appendix A:

T = µ−5 T0

We can re-express the scale factor to write down expressions for the collapse time at

the collapse boundaries in terms of α,

T+ =

(

α0

α+

)(5/6)

T0 low T− =

(

α0

α−

)(5/6)

T0high



115

or in terms of mass,

T+ =
(m0 low

m′

)5

T0 low T− =
(m0high

m′

)5

T0high

or using the de Broglie relation, speed:

T+ = α
5/6
0

(

h

m′ v+

)5/3

T0 low T− = α
5/6
0

(

h

m′ v−

)5/3

T0high

As an example, in a recent matter-wave experiment performed by Zeilinger et.

al [50], Fluorofullerenes (C60F48) with atomic mass of 1632 u were sent through a

Talbot-Lau interferometer at a mean speed of 105 m/s. This translates into a de

Broglie wavelength of 2.33 pm.

The results of this research indicate that the wavefunction of C60F48 should col-

lapse between a particle speed of v− = 4.4 × 10−11 m/s and v+ = 1.6 × 100 m/s, two

orders of magnitude slower than the particle’s mean speed in the laboratory. The

collapse times for these speeds is very small. At v−, the predicted collapse time is

4 × 10−13 s and at v+, the predicted collapse time is 4.0 × 10−15 s.

The fact that the C60F48 molecules did not localize is not a case for or against

semiclassical gravity since their mean speed was greater than v+. Semiclassical gravity

predicts that these molecules should exhibit quantum mechanical behavior at the

mean speed used in the interferometry experiment, 105 m/s. But perhaps a proposal

can be made to settle the matter on the theory of Møller and Rosenfeld once and for

all.
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4.5 Proposal for the Experimental Confirmation

of Semiclassical Gravity

In light of the successes of the Talbot-Lau interferometer in matter-wave exper-

iments, there have been proposals to perform such experiments with even larger

masses. In 1997, Clauser concluded [46] that Talbot-Lau interferometry may be

applied to particles of mass 108 nucleons (10−19 kg) and even small viruses in the

near future. In 2002, Zeilinger et. al. wrote [48] that matter-wave experiments with

objects the size of a virus are at the extreme edge of currently available technol-

ogy. In 2005, Zeilinger and Arndt wrote that matter-wave interferometry for objects

such as proteins, small viruses and nanocrystals with atomic mass of up to 106 units

(10−21 kg) should be feasible. While these experiments have not been performed yet,

it appears that they certainly will be in the near future. [45, 46, 48, 51].

Recently, in a joint effort by groups at Cornell University and Tel Aviv University,

the mass of DNA strand composed of 1578 base pairs was detected to be 999 × 103 u

(1.6 × 10−21 kg). [52] If a DNA strand of this mass could be used in a matter diffrac-

tion experiment, according to this research, its wavefunction would collapse for speeds

between:

If a researcher manages to perform such a diffraction experiment with the speed

of the DNA strand approaching anything similar to the mean speed of the vari-

ous fullerene experiments, semiclassical gravity predicts that the DNA wavefunction
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Collapse speed Collapse time

v+ 1.84 × 102 m/s T+ 3.0 × 10−20 s

3.0 × 10−0 m/s 3.3 × 10−17 s

v− 3.43 × 10−30 m/s T− 2.3 × 1035 s

Table 4.2: Collapse speed and time range for a DNA strand of mass

999 × 103 u.

should collapse in its own potential well. In other words, no quantum interference

should be observable between these speeds.

Such an experiment is said to be feasible with current technology. On the other

hand, the proposed diffraction experiment involving a virus appears to have even

better prospects because of a better range of collapse speeds. The mass of a virus

is nominally listed as 6.0 × 106 u (1.0 × 10−20 kg). According to this research, its

wavefunction should collapse for speeds between:

Collapse speed Collapse time

v+ 6.7 × 103 m/s T+ 3.7 × 10−24 s

1.2 × 102 m/s 3.4 × 10−21 s

v− 1.3 × 10−28 m/s T− 2.8 × 1031 s

Table 4.3: Collapse speed and time range for a virus of mass 6.0 × 106 u.

The wavefunction for a virus sent through a Talbot-Lau interferometer at these
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collapse speeds should collapse in the specified amount of time. In other words,

semiclassical gravity predicts that at these speeds, within the corresponding time,

the virus should behave as a classical, not quantum mechanical object. If quantum

mechanical interference were to be observed at a point beyond the corresponding

collapse time, then the Schrödinger-Newton equation would no longer be predicting

the general behavior of the viral wavefunction, and therefore, semiclassical gravity

could be decisively ruled out as a theory of gravity.

4.6 Conclusion

As an explanation for why quantum interference is suppressed in the macroscopic

world, the role of gravity can not be discounted, but it does seem less likely.

If the solutions to the Schrödinger-Newton equation collapsed unconditionally for

all masses greater than some critical mass at a given width, then the role of gravity

in explaining why quantum interference is not observed in the macroscopic world

would be very convincing. The equation is non-linear, and it may be the case that

for different types of initial conditions the solutions do unconditionally collapse in

the “large mass” range. However, the Gaussian wavefunction is a very reasonable

single-particle wavefunction, and the fact that collapse only occurs for a finite range

of masses makes gravitation an unlikely candidate to explain the boundary between

the classical and quantum world. On the other hand, the model used here—that of

a single self-gravitating but otherwise completely non-interacting particle—is highly
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unrealistic. Therefore, nothing definitive can be said. It would be interesting to

investigate a model for two or more interacting and self-gravitating particles, as with

eq. (1.6). To date, this has not been investigated.

Experiment is the final judge of a physical theory, and based on the recent matter

diffraction experiments, there is no direct evidence against semiclassical gravity as

a quantum theory of gravitation. To date, the mass and speeds used in the experi-

ments fall within the non-classical region of the Schrödinger-Newton solution space.

However, technology and experimental techniques have been steadily improving. The

expected upper mass with such experiments has gone from “108 nucleons in the near

future” to “106 u being feasible”. As it stands, an experiment involving objects with

the mass of a DNA strand or a virus is, while a monumentally difficult experiment

to perform, feasible. And such an experiment may be used to refute the semiclassical

theory of Møller and Rosenfeld.
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Appendix A

Scaling Properties of the

Schrödinger-Newton Equation

The Schrödinger-Newton equation is given by:

− h̄2

2m
∇2ψ(~r, t) − Gm2 ψ(~r, t)

∫

V

|ψ(~r, t)|2
|~r −~r ′| d

3r′ = i ∂t ψ(~r, t) (A.1)

If we make a coordinate scaling using the dimensionless parameters ǫ, ζ , and η,

x→ ǫ x m→ ζ m t→ η t

then eq. (A.1) equation becomes:

− 1

ζ ǫ2
h̄2

2m
∇2ψ(~r, t) − ζ2

ǫ
Gm2 ψ(~r, t)

∫

V

|ψ(~r, t)|2
|~r −~r ′| d

3r′ =
1

η
i ∂t ψ(~r, t)

This equation, and its solutions, are left invariant under this coordinate scaling if we

demand:

1

ζ ǫ2
=

ζ2

ǫ
=

1

η
(A.2)
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which is a set of two independent relations among the three scale variables. This

leaves one degree of freedom when choosing values for (ǫ, ζ, η). Stated differently,

only one dimensionless parameter, which we’ll call µ, is needed to specify the values

of ǫ, ζ , and η, and these values are determined by solving eq. (A.2). It can be checked

that eq. (A.2) is satisfied by choosing a unitless parameter µ such that:

ǫ = µ−3 ζ = µ η = µ−5

Therefore, the following coordinate scaling leaves eq. (A.1) invariant:

x1 = µ−3 x0 m1 = µm0 t1 = µ−5 t0 (A.3)

We will not be concerned with specific values of position versus time in any specific

solution. Rather, we will focus on how the general nature of solutions and their

characteristic evolution times depend on particle mass and the width (∼ 1/
√
α) of

the initial wavefunction. Because of the invariance, each pair of values of m and α

define an equivalence class of solutions parameterized by µ. We expect the nature of

any solution not to depend separately on values of m and α, but on the equivalence

class to which the solution belongs. Thus, it is most useful to express the scaling that

leaves the Schrödinger-Newton equation invaiant as:

m1 = µm0 α1 = µ6 α0 t1 = µ−5 t0 (A.4)

Program runs which display wavefunction collapse can be characterized by 3 numbers:

m: Mass of the self-gravitating particle. Explicit in the equation.
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α: Gaussian parameter of the initial condition: a measure of the particle’s width,

and therefore, speed via de Broglie’s relation
√
α = mv/h.

T: The time it takes for the wavefunction to collapse.

From the scaling eq. (A.4), we can obtain a relationship between these variables:

µ6 =

(

m1

m0

)6

=
α1

α0
=

(

T0

T1

)6/5

to obtain explicit relationships between each characteristic parameter of the numerical

run:

between m and α: m(α) = m0

(

α

α0

)1/6

α(m) = α0

(

m

m0

)6

(A.5)

between m and T : m(T ) = m0

(

T0

T

)1/5

T (m) = T0

(m0

m

)5

(A.6)

between T and α: α(T ) = α0

(

T0

T

)6/5

T (α) = T0

(α0

α

)5/6

(A.7)

This allows us to obtain many solutions from a single numerical solution. If a so-

lution represented by (m0, α0, T0) is obtained, then it is also the same solution for

(m1, α1, T1) = (µm0, µ
6 α0, µ

−5 T0). Stated another way, (m0, α0) and (m1, α1) have

equivalent behavior at the predictable timescales T1 = µ−5T0.
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Appendix B

Calculation of the Self-Potential

B.1 Analytic Considerations

The generator of the Schrödinger Newton dynamics is given by an integral describ-

ing a gravitational self-potential which arises from the coupling between the sources

of stress energy and quantum fields.

I =

∫ ∫ ∫

all space

|ψ(~r ′, t)|2
|~r −~r ′| d3r′

Expanding the denominator in spherical harmonics1

I = 4π

∫ ∞

0

∫ π

0

∫ 2π

0

∞
∑

ℓ=0

ℓ
∑

m=0

|ψ(~r ′, t)|2
2ℓ+ 1

rℓ
<

rℓ+1
>

Y m
ℓ (θ, φ) Y m∗

ℓ (θ′, φ′) r
′2 sin(θ′) dr′ dθ′ dφ′

1See [36] eq (3.70), pg. 102.
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where r> = max(r, r′) and r< = min(r, r′).

Assuming spherical symmetry for ψ(~r, t) = ψ(r, t), the only φ′ dependence is a

factor of eim(φ−φ′) in the products of the spherical harmonics. So the integral over φ′

vanishes for all m except m = 0. Performing the trivial φ′ integration, and making

the substitution µ′ = cos(θ′),

I = 2π

∞
∑

ℓ=0

∫ ∞

0

∫ 1

−1

|ψ(~r ′, t)|2 rℓ
<

rℓ+1
>

Pℓ(µ)Pℓ(µ
′) r′2 dµ′ dr′ (B.1)

Relating the Legendre polynomial to derivatives of Legendre polynomials,2 and con-

sidering the terms different from ℓ = 0 gives:

Iℓ 6=0 = 2π
∞
∑

ℓ=1

Pℓ(µ)

∫ ∞

0

∫ 1

−1

|ψ(~r ′, t)|2 rℓ
<

rℓ+1
>

r′2

2ℓ+ 1

(

dPℓ+1

dµ′
− dPℓ−1

dµ′

)

dµ′ dr′

Integrating over µ′, and using3 Pn(±1) = (±1)n, we find that the integrand is iden-

tically zero for all ℓ 6= 0. Going back to eq. (B.1) and recalling that P0(µ) = 1, we

find:

Iℓ=0 = 4π

∫ ∞

0

|ψ(~r ′, t)|2 r
′2

r>
dr′ =

4π

r

∫ r

0

|ψ(~r ′, t)|2 r′2 dr′ + 4π

∫ ∞

r

|ψ(~r ′, t)|2r′ dr′

2See [36] eq. (3.28), pg. 89.
3See [36], pg. 87.
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So the gravitational self potential energy is given by:

Vg(r, t) = −Gm2

∫ ∫ ∫

all space

|ψ(~r ′, t)|2
|~r −~r ′| d3r′

= −4πGm2

(

1

r

∫ r

0

|ψ(~r ′, t)|2 r′2 dr′ +

∫ ∞

r

|ψ(~r ′, t)|2 r′ dr′
)

(B.2)

One might worry about the 2nd term of eqn(B.2); after all, the electrostatic field

of a point charge at r is dependent only on charge at r′ ≤ r, but the 2nd integral is

clearly an integral over r′ ≥ r. However, there is no problem here. Changing notation

to the electrostatic equivalent,

Ve(r, t) =
4π

r

∫ r

0

ρ(r′) r′2 dr′ + 4π

∫ ∞

r

ρ(r′) r′ dr′

a quick calculation shows that the resulting electric field is not dependent on charge

outside of the field point:

~E(r) = −∂Ve

∂r

=
4π

r2

∫ r

0

ρ(r′) r′2 dr′ − 4π

r
ρ(r) r2 + 4πρ(r) r

=
4π

r2

∫ r

0

ρ(r′) r′2 dr′

which clearly shows that although the potential depends on charge located at r′ > r,

the electric field does not. As expected, ~E(r) is independent of charge density outside

r, and by analogy, ~g(r) is independent of mass density outside r.
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B.2 Numerical Considerations

In psuedo-numerical code notation, eq. (B.2) can be expressed as:

V n
j = −4πGm2

(

1

j∆r

j−1
∑

i=0

|ψn
i |2 (i∆r)2 ∆r +

N−1
∑

i=j

|ψn
i |2 (i∆r) ∆r

)

(B.3)

= −4πG (m∆r)2
(

1

j

j−1
∑

i=0

|ψn
i |2i2 +

N−1
∑

i=j

|ψn
i |2i
)

(B.4)

That is, to get the potential at a point j on the spatial grid, we sum over all ψi. To

obtain the potential at all points on the grid, we vary j from 0 to N−1. However, eq.

(B.4) is computationally very expensive. The program is in the potential calculating

routines for the vast majority of the time, so performing this integral as efficiently as

possible is very important. After much head scratching, I came up with a convoluted

scheme to compute this sum with the least number of computational steps which is

included at the end of this appendix.

One might worry about the 1/r term in the potential energy integral, eq. (B.2)

(or equivalently, the 1/j term in eq. (B.4)), but with a little thought, the potential

integral is regular and well behaved everywhere. The problem is completely analagous

to the 1/r divergence in the expression for the Laplacian in polar coordinates. At the

origin, polar coordinates become ill-defined. Numerically, the r dependence in the

limits save the integral from diverging.



127

void SetGravPotential(long double V[], long double complex wf[],

long double dr, long double m)

{

register long double sum1 = 0.0L, sum2 = 0.0L;

// I wish C were static, but it can’t because dr isn’t really "constant".

long double C = -4.0L * M_PIl * m * m * dr * dr;

for (register int j=1; j<N; ++j)

{

// This loop affects V[N-1] but doesn’t affect V[0]

sum2 += (long double)j * (long double)j * conjl(wf[j]) * wf[j];

V[j] = sum2 / (long double)j;

}

for (V[0]=0.0L, register int j=N-1; j>=1; --j)

{

// This loop affects V[0] but doesn’t affect V[N-1]

sum1 += (long double)j * conjl(wf[j]) * wf[j];

V[j-1] += sum1;

V[j-1] *= C; // Multiply by overall constant

}
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// Multiply last element by C, since it’s not done in the previous loop.

V[N-1] *= C;

}

void SetFreePotential(long double V[])

{

for (register int i=0; i<N; ++i)

V[i] = 0.0L;

}
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Appendix C

Tridiagonal Matrices

At each timestep t the program requires solving a set of N linear equations with N

unknowns. The solution to this system of equations is essentially the wavefunction

at timestep t+ ∆t. Being a novice numerical physicist at the outset of this project,

I did a search for numerical libraries to solve linear equations. This did not work out

for a number of reasons:

1. I did not want a black box. Schrödinger’s equation is infamously unstable with

regard to numerical solutions. I wanted to know all the details of my code to

understand what kind of precision to expect in the solutions.

2. Many of the high-quality routines are in Fortran anyhow.

3. The ones in C mainly used floats. In an attempt to gain high accuracy, my

code uses long double exclusively. Using these matrix solvers would result in
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a loss of precision.

4. My code makes use of the complex variable type, introduced into C in the C99

Standard and implemented in GNU’s gcc compiler sometime around 2001. At

the time of this writing, I know of no canned C matrix solvers that work with

matrices of complex long double data types.

5. The system of linear equations generated by my difference equations are tridi-

agonal in nature. Solving the equations with a typical canned routine would be

computationally extremely wasteful.

6. Many solvers written in C were written in archaic C and generated compiler

warnings. Worse, they were poorly written since they trampled on the input

matrices to avoid using malloc(). I needed a routine that did not trample on

its arguments.

For these reasons, I decided to write my own matrix solver. I developed an al-

gorithm that solves tridiagonal matrices in an efficient manner, and implemented

the algorithm. I later found that this algorithm is already fairly well known as the

“Thomas Algorithm”.

C.1 Developing the Thomas Algorithm

For each time step t, the difference equations generate a system of N linear equa-

tions in N unknowns of the form:
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b0x0 + c0x1 = d0

a1x0 + b1x1 + c1x2 = d1

a2x1 + b2x2 + c2x3 = d2

. . .

aN−2xN−3 + bN−2xN−2 + cN−2xN−1 = dN−2

aN−1xN−2 + bN−1xN−1 = dN−1

This form is called “tridiagonal”. The coefficients ai (called the super-diagonal), bi

(called the diagonal), and ci (called the sub-diagonal) are generated by the difference

equations themselves. It is noteworthy that the bi coefficients are the only ones which

are time dependent, by virtue of containing sums of the time dependent potential.

The coefficients di represent the known wavefunction at time t. The unknowns, xi

(the χn
j vector) essentially represent the unknown wavefunction at time t+ ∆t. The

index i represents the location within the grid. C arrays of size N are indexed from

0 to N − 1, so that is the convention we will use for this discussion. The first thing

we will do is eliminate the ai.

Multiply the 0th equation by a1/b0 and subtract from the 1st equation. Let

B0 = b0 and D0 = d0. Define B1 = b1 − a1

B0
c0, and D1 = d1 − a1

B0
D0.
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B0x0 + c0x1 = D0

B1x1 + c1x2 = D1

a2x1 + b2x2 + c2x3 = d2

. . .

aN−2xN−3 + bN−2xN−2 + cN−2xN−1 = dN−2

aN−1xN−2 + bN−1xN−1 = dN−1

Multiply the 1st equation by a2/B1 and subtract from the 2nd equation. Define

B2 = b2 − a2

B1
c1, and D2 = d2 − a2

B1
D1.

B0x0 + c0x1 = D0

B1x1 + c1x2 = D1

B2x2 + c2x3 = D2

. . .

aN−2xN−3 + bN−2xN−2 + cN−2xN−1 = dN−2

aN−1xN−2 + bN−1xN−1 = dN−1

Keep proceeding in this manner until all the ai are eliminated. Once we multiply
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equation N − 2 by aN−1/BN−2 and subtract that from equation N − 1, we get:

B0x0 + c0x1 = D0

B1x1 + c1x2 = D1

+ B2x2 + c2x3 = D2

. . .

BN−2xN−2 + cN−2xN−1 = DN−2

BN−1xN−1 = DN−1

It is now clear how to find the xi. Equation N − 1 gives xN−1, and using this result

with equation N − 2 gives xN−2, and so on.

C.2 Summary

Taking a0 = cN−1 = 0 as a convention, we obtain the xi recursively:

xi =
Di − cixi+1

Bi
where i = N − 1, . . . , 0

where

Bi = bi −
ai

Bi−1

ci−1 and Di = di −
ai

Bi−1

Di−1 where i = 0, . . . , N − 1

Instead of storing and performing computations on N2 numbers (where N is ex-
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tremely large and most of the elements are zero), this algorithm works with only 3N

numbers.
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/* trisolve.c

*

* Solves Q(t) X(t) = Psi(t). Update the solution, but be careful

* about trampling on the data! We solve a tridiagonal system of

* long double complex variables.

*/

#include "defines.h" // Provides gridsize N

#include "trisolve.h"

void trisolve(long double complex a[N], long double complex b[N],

long double complex c[N], long double complex d[N],

long double complex X[N])

{

long double complex dbar[N], bbar[N];

register int i;

/* Transform the matrix */

bbar[0] = b[0];

dbar[0] = d[0];

for (i=1; i<N; ++i)

{
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bbar[i] = b[i] - a[i] * c[i-1] / bbar[i-1];

dbar[i] = d[i] - a[i] * dbar[i-1] / bbar[i-1];

}

/* Form the solution */

X[N-1] = dbar[N-1] / bbar[N-1];

for (i=N-2; i>=0; --i)

X[i] = (dbar[i] - c[i]*X[i+1]) / bbar[i];

}
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Appendix D

The Analytic Free Particle

D.1 Verifying the program

One of the most important questions a researcher can ask is, “Are my results

accurate.” Numerically, this project can be broken down into two components: solu-

tion of the free particle and solution of the particle in a potential. By parametrically

“turning down the potential” and verifying that

limit
V →0

ψgrav(r, t) = ψfree(r, t)

one can test that the components related to solving the free particle: the Crank-

Nicholson algorithm, derivatives at the polar origin, the difference equations, basic

coding, and program logic, are all correct. Once it is shown that the program com-

putes the time evolution for the free particle correctly, the only question left is whether
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it computes the potential correctly, since the potential gets placed into the difference

equations. Therefore, a considerable amount of effort should be put into verifying the

free particle. Once this is done, a great deal of confidence can be put into the PDE

solver.

The solution of the free particle is non-trivial. Although Schrödinger’s free particle

equation is linear, it is a time dependent partial differential equation. For the benefit

of the interested reader, the solution is derived here.

D.2 Obtaining the analytic free particle solution

The solution to Schrödinger’s free particle will be expanded in spherical eigenfunctions

of the Laplacian operator: spherical Bessel functions and spherical harmonics. Since

the particle is unbound, there are no conditions on the wave number, and the sum is

an integral over all momenta.

φℓ,m =

∫ ∞

0

Cℓ,m(k)jℓ(kr)Y
m
ℓ (θ, φ) dk (D.1)

As usual for a free particle, the k eigenvalue is
√

2mE/h̄ and continuous. The

problem at hand is to solve Schrödinger’s equation

− h̄2

2m
∇2ψ = ih̄

∂ψ

∂t
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given the normalized initial condition

ψ(r, 0) =
(α

π

)3/4

e−αr2/2 (D.2)

The free particle Hamiltonian is a special case of a spherically symmetric Hamil-

tonian. Since our initial condition is spherically symmetric, our wavefunction will

evolve under spherical symmetry as well. Therefore, φℓ,m ≡ 0 except for ℓ = m = 0.

We can thus write the general expansion eq. (D.1) of our initial condition eq. (D.2)

as:
(α

π

)3/4

e−αr2/2 =

∫ ∞

0

C(k) j0(kr) dk

Using1 j0(kr) =
√

π/2krJ1/2(kr) = sin(kr)/kr to rewrite this expression in a form

more convenient for using orthogonality,

(α

π

)3/4

e−αr2/2 =

√

π

2r

∫ ∞

0

C(k)√
k
J1/2(kr) dk

Multiplying through by k′r2j0(k
′r) = k′r2 sin(k′r)/k′r = k′r2

√

π/2k′rJ1/2(k
′r) and

integrating over r:

(α

π

)3/4
∫ ∞

0

r sin(k′r) e−αr2/2 dr =
π

2

∫ ∞

0

C(k)

√

k′

k

∫ ∞

0

J1/2(kr)J1/2(k
′r)r dr dk

(D.3)

Using the orthogonality relation for Bessel functions2
∫∞

0
Jm(kx)Jm(k′x)xdx = 1

k
δ(k−

1See [36] eq. (16.9), pg. 740.
2See [36] eq. (3.112), pg. 110.
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k′), we can simplify the RHS of eq. (D.3):

π

2

∫ ∞

0

C(k)

√

k′

k

∫ ∞

0

J1/2(kr)J1/2(k
′r)r dr dk =

π

2

∫ ∞

0

C(k)

√

k′

k

δ(k − k′)

k
dk

(D.4)

=
π

2

C(k′)

k′
(D.5)

And the LHS of eq. (D.3) can be computed with Gradshtyn and Ryzhik, 5th ed. pg

529, eq(3.952.1) (surpress all primes now that we are done with them):

(α

π

)3/4
∫ ∞

0

r sin(kr)e−αr2/2 dr =
k√

2
4
√
πα3

e−k2/2α (D.6)

Equating eq. (D.5) and eq. (D.6) and solving for the constant we get:

C(k) =
√

2

(

k

π

)2
(π

α

)3/4

e−k2/2α

So the initial condition, expressed in the basis of eigenfunctions of the free particle

Hamiltonian is:

ψ(r, 0) =
(α

π

)3/4

e−αr2/2 =

√
2

π2

(π

α

)3/4
∫ ∞

0

k2e−k2/2αj0(kr) dk

=

√
2

π2r

(π

α

)3/4
∫ ∞

0

k sin(kr)e−k2/2α dk (D.7)

Applying formal time evolution to eq. (D.7),

ψ(r, t) =

√
2

π2r

(π

α

)3/4
∫ ∞

0

k sin(kr)e−k2/2α e−iEKt/h̄ dk
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and since the energy eigenvalues are given by Ek = (h̄k)2/2m,

ψ(r, t) =

√
2

π2r

(π

α

)3/4
∫ ∞

0

k sin(kr)e−
k2

2 [ 1

α
+ ih̄t

m ] dk

Expanding the sin(kr) term, defining β = (m + iαh̄t)/2mα, and changing variable

from k to −k,

ψ(r, t) =

√
2

π2r

(π

α

)3/4
∫ ∞

−∞

k

2i
e−βk2+ikr dk

Completing the square in the exponential,

ψ(r, t) =

√
2

π2r

(π

α

)3/4 e−r2/4β

2i

∫ ∞

−∞

ke−β(k− ir
2β

)2 dk

And finally, changing variable from k to u = k − ir/2β,

ψ(r, t) =

√
2

π2r

(π

α

)3/4 e−r2/4β

2i

∫ ∞

−∞

(

u+
ir

2β

)

e−βu2

du

The first term of the integrand is odd over an interval symmetric about the origin, so

it’s zero. Performing the trivial second integral and simplifying the result,

ψ(r, t) =
(α

π

)3/4
(

m

m+ iαh̄t

)3/2

e−
α
2

r2( m
m+iαh̄t) (D.8)

This is the exact solution for the time dependent Schrödinger equation for a free

particle given the initial condition eq. (D.2). Upon inspection, eq. (D.8) reduces to the

initial condition. A direct demonstration that eq. (D.8) satisfies the time dependent

Schrödinger equation and has a normalization of unity is much longer than its value

here justifies,
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Figure D.1: Plot of free particle probability versus time for h̄ = m = α = 1.
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