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Abstract

These are my personal notes on hidden variable theory, a keen interest of mine, based
on lectures and conversations by Richard Scalettar, discussions with my advisor,
Steve Carlip and various papers written by John S. Bell.
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1 Introduction To Hidden Variable Theory

Most physicists say that measurements do not reveal a pre-existing value
of the measured quantity; we say that the outcome of the measurement is
brought into being by the very act of measurement. There are two reasons
why we say this:

1. Measurements disturb the system

If we want to measure the position of an atom we must shine light on
it. The wavelength of the light must be about the atom’s size: λ . ∆x.
But the light imparts a momentum to the atom: px = h/λ & h/∆x,
thereby changing the very thing we want to measure.

But this is a false argument because it’s non-sequitar. It begs the
question: So what? Logically, the fact that we can’t measure x and px

simultaneously doesn’t mean that x and px didn’t exist simultaneously
to begin with!

Perhaps x and px really do simultaneously exist, but we just can’t
measure them simultaneously. Therefore, while it’s true that the very
act of measurement disturbs the thing we want to measure, but that
doesn’t mean that pre-determined values didn’t exist to begin with.

2. Uncertainty Principle Forbids It

The uncertainty principle states that it’s impossible to prepare an en-
semble1 of systems with an arbitrarily sharp distinction of x and px.

However, the uncertainty principle does not say that an individual
member of that ensemble cannot have a definite value of x and px!

Therefore, there’s nothing about the formalism of quantum mechanics that
says a-priori that a definite value does not exist before the measurement.

One might be tempted to ask, “who cares?” If you can’t measure x and px

simultaneously, even if both values exist simultaneously, the whole debate is
moot! To address this attitude, it might be useful to consider an analogy.

1How did the word “ensemble” creep into the uncertainty principle? The uncertainty
principle says ∆x∆px & ~/2, where (∆x)2 = 〈x2〉2 − 〈x〉2. The 〈〉 operator is actually
defined by preparing an ensemble of systems.
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Consider statistical mechanics. It’s impossible to know or even store on
all the computers on Earth the positions and momenta for all 1023 coffee
molecules in your coffee mug. Does that mean statistical mechanics is use-
less? Certainly not! In fact, it’s one of the most useful branches of physics
we have! Just as constraints from classical mechanics makes statistical me-
chanics useful, constraints from a hidden variable theory might prove useful
in quantum mechanics. If there were a HVT, and even if we still couldn’t
measure x and px simultaneously, knowing the theory would vastly improve
our understanding of quantum mechanics.

In a HVT, the state function |Ψ〉 is composed of an ensemble of systems, each
with definite values for all observables which exist before a measurement is
made. You still need probability because before the measurement is made,
you don’t know which one of the systems in the ensemble you’ll get. The
uncertainty principle still exists in a HVT. However, uncertainty principle
becomes a statement about what types of ensembles it’s possible to prepare.
Like statistical mechanics. And yet unlike statitstical mechanics.

How do we go about proving that a hidden variable theory exists? We con-
struct one! In fact, we do just that in section 2. How do we prove that no
HVT exists? We create an impossibility proof. In fact, we do just that in
section 4.

1.1 Interpretations of Quantum Mechanics

Quantum mechanics throws indeterminancy into act of measurement.2 This
is often disturbing to people who learn from an early age that human beings
were meant to classify and quantify everything in the universe. Even if we
were to know everything there is to know about a particle, its state function,
we cannot predict with certainty the outcome of a measurement on the par-
ticle’s position. The only thing quantum mechanics has to offer is statistical
information about the possible outcomes of a position measurement. The ef-
forts of the best minds humanity has to offer has been turned to the question
of whether this peculiarity is due to some fault of the measuring apparatus

2A huge misconception is that quantum mechanics is stochastic by nature. This is false.
Schrödinger’s equation is completely deterministic. It’s only the act of measurement that
throws probability into the theory. But measurement has more to do with humans fiddling
with a system than it does the postulates of quantum mechanics.
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or a fundamental indeterminancy in nature.

Suppose we make a position measurement of an electron and found it at point
P . An interesting question to ask is: where was the particle just before the
measurement was made? There are many positions on this question:

Realism

The particle was at point P . This is the most reasonable position and
the one that Einstein advocated. Quantum mechanic’s indeterminacy
is not a fact of nature but simply a statement of our ignorance or
inability to manufacture a measuring device which doesn’t disturb the
system.

Since nobody in their right mind would deny the success of QM, realists
maintain that one of two things must be true:

1. QM is an incomplete theory.

2. QM is an excellent model, but with no semblance to reality.

Many realists believe that QM is an incomplete theory which needs only
a minor adjustment: a hidden variable. It’s called a hidden variable
because so far, we haven’t been able to detect or theorize what this
variable could be.

Orthodoxy

The particle wasn’t really anywhere; we forced the position to come
into existance by the very act of measurement. Measurements not
only disturb what they measure. . .they produce it! We compel the
particle to assume a definite position. This is called the Copenhagen
Interpretation of quantum mechanics.

If this position is correct, then the act of measuring something is a
very strange process. We get into problems of who is allowed to make
a measurement and what a measurement consists of.

Some people say that the notion of HVT is fringe physics. To these
people, I say that the Copenhagen interpretation is nothing more than
metaphysics and magic.
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Agnosticism

Agnostics refuse to answer the question. Pauli advocated this point of
view by saying “One should no more rack one’s brain about the problem
of whether something one cannot know anything about exists. . .then
about the ancient question of how many angels are able to sit on the
point of a needle3’.

John S. Bell formulated Bell’s Theorem which eliminated agnosticism from
the viable choice of interpretations and made the choice of realism vs or-
thodoxy a matter of experiment. Alan Aspect4 and others performed the
experiment, and so far, all the evidence seems to point towards orthodoxy.

By the way, what if we were to make a second position measurement of
the electron at point P immediately after the first position measurement?
Everyone agrees (including experiment) the particle will still be at point
P . How does indeterminacy account for this? This particular issue is so
important that there’s a postulate devoted to it: the “wavepacket reduction
postulate” (WRP), or the “R process”. As soon as the position measurement
is made, the wavefunction collapses to a single eigenstate so that there’s
no longer indeterminacy in the particle’s location. However, soon after the
first measurement is made, the wavefunction begins to spread out according
to Schrödinger’s equation, so the second measurement must be made very
quickly if you want to find the electron still at P with absolute certainty.

3Quoted by N. David Mermin, Is the moon there when nobody looks?, Physics Today,
April 1985, p. 40

4A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)
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2 A Successful Hidden Variable Theory

2.1 Before we begin

We’ll construct a successful hidden variable theory in two dimensions, which
was first proposed by John S. Bell himself. To begin, we’ll review some
properties of 2 dimensional Hilbert spaces. Proofs are given in appendix B.

1. Any hermitian operator Â can be written as a linear combination of
the identity operator plus the three Pauli spin matrices:

Â = a0Î + aiσ
i = aµσ

µ {aµ} ∈ Z (1)

2. Any observable of the form Â = aµσ
µ has eigenvalues of:

ν(Â) = a0 ± |~a| where |~a| =
√

aµaµ (2)

3. The operators Â and B̂ commute if ~a is parallel to ~b.

4. Every state |Ψ〉 =
(

χ1

χ2

)
is an eigenstate of σn = ~σ · n̂ for some n̂.

2.2 Construction of the theory

Let |Ψn〉 be a state given by an ensemble of systems and characterized by
n̂ from property 4. Let each system in the ensemble have a hidden variable
associated with it called m̂, with any direction of m̂ being equally likely.

Consider the operator Â. A measurement of Â in any given system of the
ensemble is determined by the value m̂ for that system, and in 2D, there are
only two possible outcomes of the measurement:

ν(Â) =

{
a0 + |~a| if (m̂ + n̂) · ~a > 0

a0 − |~a| if (m̂ + n̂) · ~a < 0

The result of a measurement of ~A is pre-determined by the existing value
of m̂ in that particular system in the ensemble. What we need to do is to
show that 〈Â〉 in our toy HVT has the same value predicted by quantum
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mechanics without a hidden variable. If we show this, then our toy hidden
variable theory is a viable theory.

So we’re now how to calculate 〈~A〉. Given that ~A = a0Î +~a ·σ and property
4:

n̂ · ~σ|Ψ〉 = ±|Ψ〉 (3)

〈Ψ|~A|Ψ〉 = a0 + ~a · n̂ (4)

Choose ẑ to be parallel with ~a. Then:

~a · (m̂ + n̂) = (mz + nz)|~a|

Of course the |~a| has no bearing on whether ~a · (m̂ + n̂) and hence the

eigenvalue we obtain from measuring ~A. Now, m̂ is equally likely to point in
any direction, so:

m̂ = sin(θ) cos(φ)x̂ + sin(θ) sin(φ)ŷ + cos(θ)ẑ

So let’s find the average eigenvalue. We’re averaging over a sphere, so we
need to divide by 4π.

〈~A〉 =
1

4π

∫ π

0

sin(θ) dθ

∫ 2π

0

dφ

{
a0 + |~a| cos(θ) > −nz

a0 − |~a| cos(θ) < −nz

=
1

2

∫ π

0

sin(θ)

{
a0 + |~a| cos(θ) > −nz

a0 − |~a| cos(θ) < −nz

Let let θ0 be the angle such that −nz = cos(θ0).
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〈~A〉 = a0 +
|~a|
2

[∫ θ0

0

sin(θ) dθ −
∫ π

θ0

sin(θ) dθ

]
= a0 +

|~a|
2

[
− cos(θ)|θ0

0 + cos(θ)|πθ0

]
= a0 − |~a| cos(θ0)

= a0 + |~a|nz

= a0 + ~a · n̂

Just as expected. We showed that the expectation value of ~A is what we’d
expect it to be, in full agreement with what standard quantum mechanics
predicts. Thus, as strange as it seems, we have constructed a correct hidden
variable theory.
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3 Von Neumann’s Silly Proof

Now that I’ve proved a successful HVT exists, I’m going to prove that no
successful HVT exists. But first, I want to show you a false proof that no
HVT exists formulated by John VonNeumann in 1932. A physicist named
Grete Hermann pointed out the logical flaw in his proof, but nobody listened
to her. It wasn’t until John S. Bell, who had already made a name for himself,
had pointed out the flaw that people began to realize Von Neumann’s error.
Before starting, we need to know some of the plausible features that a HVT
might have.

3.1 What Are Plausible Features That A HVT Might
Have?

Imagine we’re doing quantum mechanics and we have the operators Â, B̂,
Ĉ and a state |φ〉 which is an ensemble of systems, each with definite pre-
existing values of the measurements ν(Â), ν(B̂) and ν(Ĉ). Suppose we have
a valid relationship among these operators:

f(Â, B̂, Ĉ) = 0 (5)

If the operators Â, B̂, Ĉ all commute then we would expect the same rela-
tionship among the simultaneous eigenvalues:

f(ν(Â), ν(B̂), ν(Ĉ)) = 0 (6)

This is a variable constraint to put on the HVT, and it seems quite reasonable.
This constraint is often used by HVT people, but Von Neumann tried using
it to disprove HVT.

3.2 The Proof

In 1932, Von Neumann tried giving a silly proof that no HVT existed by as-
suming that such theories must obey equations 5 and 6 even if the operators
don’t commute. This is silly because we can’t measure the eigenvalues simul-
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taneously so we don’t really expect this constraint to be true if the operators
don’t commute.

Let Â = σx, B̂ = σy and Ĉ = σx + σy. Then certainly, Ĉ − B̂ − Â = 0. But

we know that ν(Â) = ν(B̂) = ±1, so ν(Â) + ν(B̂) = −2, 0, 2.

However5, ν(Ĉ) = ν(Â + B̂) = ±
√

2 which is certainly not equal to −2, 0, 2.

So Von Neumann had an operator relationship of the form Ĉ−B̂−Â = 0, but
ν(Ĉ)−ν(Â)−ν(B̂) 6= 0, so no HVT. But the proof is silly since you shouldn’t
expect this to be true for operators that don’t commute. The eigenvalues
don’t exist simultaneously.

People quoted Von Neumann’s proof for 34 years until 1966 when John S.
Bell pointed out that the proof is silly. Here is what Bell had to say about
Von Neumann’s proof:

Yet the Von Neumann proof, if you actually come to grips with
it, falls apart in your hands. There’s nothing to it. It’s not
just flawed. . .it’s silly. When you translate his assumptions into
physical significance, they’re nonsense. You may quote me on
this. The proof of Von Neumann is not just false, it’s foolish. . .

5See Appendix A for a proof.
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4 Proof that no HVT Exists

4.1 Introduction

As mentioned, if it were impossible to simulaneously measure eigenvalues for
operators that don’t commute, even if they exist simultaneously, knowledge
of a HVT would bring us to a closer understanding of nature, which is one
of the aims of physics. Bell’s theorem is the standard proof that no HVT
exists. The theorem shows that one of four possibilities must be true:

1. Nonlocality of physics: faster than light communication is possible.
This is what physicists call ‘spooky action at a distance’.

2. A many world interpretation of quantum mechanics: all outcomes that
can occur for a particular measurement do occur in different realities.

3. Strong determinism: This basically says that that quantum mechanics,
while a useful model, is just plain wrong.

We’ll begin by
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A Properties Of A 2 Dimensional Hilbert Space

In this appendix, I prove four theorems used to construct our successful
HVT in two dimensions. Let the generalized four Pauli spin matrices be
~σ(4) = (I, σx, σy, σz).

A.1 Proof of Property 1

We want to prove that any 2 dimensional hermitian operator can be written
as a linear combination of the 4 Pauli spin matrices.

Proof by construction: if we can write down the most general hermitian oper-
ator as a combination of the Pauli spin matrices, we’ve proved the assertion.

The most general hermitian operator can be written as:

Â =

(
A B − iC

B + iC D

)
which, after a little algebra, can be easily verified to equal

~A =
A + D

2
Î +

A−D

2
σx +

A−D

2
σz + Bσx + Cσy

Therefore, the assertion is proved.

A.2 Proof of property 2

We want to prove that the eigenvalues of Pauli spin matrices in an arbitrary
direction is still λ = ±1.

If n̂ is a unit vector, the Pauli spin matrices along n̂ is given by:

~σ · n̂ = ~σ · (nxx̂ + nz ẑ + nz ẑ)

= nx

(
0 1
1 0

)
+ ny

(
0 −i
i 0

)
+ nz

(
1 0
0 −1

)
=

(
nz nx − iny

nx + iny −nz

)
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Since |n̂| = 1, the determinant of ~σ · n̂ must be the same as the determinant
of ~σ, as illustrated here:

det(~σ · λ) =

∣∣∣∣ nz − λ nx − iny

nx + iny −nz − λ

∣∣∣∣
= λ2 − (n2

x + n2
y + n2

z)

= λ2 − 1 =⇒ λ = ±1

As expected, det(σ · n̂) = ±1. Therefore, the determinant of σx + σy is:

det(σx + σy) = det(~σ · n̂)

where n̂ = (1, 1, 0)
√

2, which by the above argument must be λ = ±1.

Therefore, the determinant of aµσµ is:

det(aµσµ) = det(a0Î + aiσ
i) = det(a0Î) + det(aiσ

i) = a0 ± |~a|

which proves the assertion.

A.3 Proof of Property 3

We’d like to prove that the commutator of operators Â and B̂ is zero if ~a is
parallel to ~b.

Let Â and B̂ be two dimensional hermitian operators. From property 2 we
can write Â = a0Î + ~σ · ~a and B̂ = b0Î + ~σ · ~b. Since the identity operator
commutes with everything, we can write:

[~A, ~B] = [ a0Î + ~a · ~σ, b0Î + ~σ · ~b ] = [ ~a · ~σ, ~σ · ~b ] = [ σia
i, σib

i ]

But if ~a and ~b are parallel, then ai = cbi for some number c:

[~A, ~B] = c [ σia
i, σia

i ] = c ai[ σi, σi ]

which must be 0 since each spin matrix commutes with itself. Therefore, the
assertion is proved.
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